Cho phương trình \(\left( {m - 2} \right){\rm{log}}_2^2\left( {x + 1} \right) - 2\left( {1 + m}
Cho phương trình \(\left( {m - 2} \right){\rm{log}}_2^2\left( {x + 1} \right) - 2\left( {1 + m} \right){\rm{lo}}{{\rm{g}}_2}\left( {x + 1} \right) + 3\left( {m - 2} \right) = 0\) (với \(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để phương trình đã cho có đúng một nghiệm thuộc khoảng \(\left( { - \dfrac{1}{2};1} \right)\) là
Đáp án đúng là: A
Quảng cáo
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












