Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội (HSA) Đợt 6 và TN THPT (Đợt 3) - Ngày 26-27/04/2025 ↪ ĐGNL Hà Nội (HSA) ↪ TN THPT
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(3,SA = SD =

Câu hỏi số 723153:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(3,SA = SD = 3\), \(SB = SC = 3\sqrt 3 \). Gọi \(M,N\) lần lượt là trung điểm các cạnh \(SA\) và \(SD,P\) là một điểm thuộc cạnh \(AB\) sao cho \(AP = 2\). Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng \(\left( {MNP} \right)\).

Đáp án đúng là:

Quảng cáo

Câu hỏi:723153
Giải chi tiết

Ta có \(\left\{ {\begin{array}{*{20}{l}}{AD//\left( {MNP} \right)}\\{AD \subset \left( {ABCD} \right)}\\{\left( {ABCD} \right) \cap \left( {MNP} \right) = PQ}\end{array} \Rightarrow PQ//AD\left( {Q \in CD} \right)} \right.\).

Thiết diện khối chóp cắt bởi mặt phẳng \(\left( {MNP} \right)\) là hình thang \(MNQP\).

Do \(\Delta SDC = \Delta SAB\left( {c - c - c} \right)\) nên \(\Delta NDQ = \Delta MAP\left( {c - g - c} \right) \Rightarrow NQ = MP\).

Vậy là \(MNQP\) hình thang cân.

Ta có \({\rm{cos}}\angle SAB = \dfrac{{S{A^2} + A{B^2} - S{B^2}}}{{2.SA.AB}} = \dfrac{{9 + 9 - 27}}{{2.3.3}} = \dfrac{{ - 1}}{2}\).

\(M{P^2} = M{A^2} + A{P^2} - 2.MA.AP.{\rm{cos}}\widehat {MAP} = \dfrac{9}{4} + 4 - 2.\dfrac{{3}}{2}.2.\dfrac{{ - 1}}{2} = \dfrac{{37}}{4} \Rightarrow MP = \dfrac{{\sqrt {37}}}{2}\).

Từ \(M\) kẻ \(ME \bot PQ\), từ \(N\) kẻ \(NF \bot PQ\). Tứ giác \(MNFE\) là hình chữ nhật nên

\(MN = EF = \dfrac{{3}}{2} \Rightarrow PE = QF = \dfrac{{3}}{4} \Rightarrow ME = \sqrt {M{P^2} - P{E^2}}  = \dfrac{{\sqrt {139} }}{4}\).

Vậy diện tích thiết diện cần tìm là \({S_{MNQP}} = \dfrac{{\left( {MN + PQ} \right) \cdot ME}}{2} = \dfrac{\sqrt {139}}{{16}}=0,74\).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com


Tuyensinh247.com - 18006947
Luôn sẵn sàng hỗ trợ!
Tuyensinh247.com - 18006947
Tuyensinh247.com - 18006947
agent avatar
Luôn sẵn sàng hỗ trợ!
Em để lại tên và SĐT nhé! Tuyensinh247.com sẽ hỗ trợ tốt nhất cho em!