Cho hình chóp đều S.ABCD có cạnh bên và cạnh đáy bằng a. Thể tích của khối chóp S.ABCD
Cho hình chóp đều S.ABCD có cạnh bên và cạnh đáy bằng a. Thể tích của khối chóp S.ABCD là:
Đáp án đúng là: A
Quảng cáo
Gọi \(O = AC \cap BD\)
Vì chóp S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)
Ta có: \(AC = BD = a\sqrt 2 \Rightarrow OA = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{2}\)
\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OA \Rightarrow \Delta SOA\) vuông tại O \( \Rightarrow SO = \sqrt {S{A^2} - O{A^2}} = \sqrt {{a^2} - \dfrac{{{a^2}}}{2}} = \dfrac{{a\sqrt 2 }}{2}\)
Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}\dfrac{{a\sqrt 2 }}{2}{a^2} = \dfrac{{{a^3}\sqrt 2 }}{6}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com