Đáp án đúng là: A
Gọi \(O = AC \cap BD;E = SO \cap A'C'\)
Trong (SBD) kẻ đường thẳng qua E cắt SB, SD lần lượt tại B’ và D’
\( \Rightarrow \) (P) là \(\left( {A'B'C'D'} \right)\)
Đặt \(\frac{{SB'}}{{SB}} = x;\,\,\frac{{SD'}}{{SD}} = y\,\,\left( {0 < x,y \le 1} \right)\) ta có:
\(\begin{array}{l}\frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{1}{3}.x.\frac{1}{5} = \frac{1}{{15}}x \Rightarrow {V_{S.A'B'D'}} = \frac{x}{{15}}{V_{S.ABC}} = \frac{x}{{30}}{V_{S.ABCD}}\\\frac{{{V_{S.A'C'D'}}}}{{{V_{S.ACD}}}} = \frac{{SA'}}{{SA}}.\frac{{SC'}}{{SC}}.\frac{{SD'}}{{SD}} = \frac{1}{3}.\frac{1}{5}.y = \frac{1}{{15}}y \Rightarrow {V_{S.A'C'D'}} = \frac{y}{{15}}{V_{S.ACD}} = \frac{y}{{30}}{V_{S.ABCD}}\\ \Rightarrow k = \frac{{{V_{S.A'B'C'D'}}}}{{{V_{S.ABCD}}}} = \frac{{x + y}}{{30}}\,\,\,\left( 1 \right)\end{array}\)
Tương tự ta có:
\(\begin{array}{l}\frac{{{V_{S.A'B'D'}}}}{{{V_{S.ABD}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SD'}}{{SD}} = \frac{1}{3}.x.y = \frac{1}{3}xy \Rightarrow {V_{S.A'B'D'}} = \frac{{xy}}{3}{V_{S.ABC}} = \frac{{xy}}{6}{V_{S.ABCD}}\\\frac{{{V_{S.B'C'D'}}}}{{{V_{S.BCD}}}} = \frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}}.\frac{{SD'}}{{SD}} = x.\frac{1}{5}.y = \frac{1}{5}xy \Rightarrow {V_{S.B'C'D'}} = \frac{{xy}}{5}{V_{S.ACD}} = \frac{{xy}}{{10}}{V_{S.ABCD}}\\ \Rightarrow k = \frac{{{V_{S.A'B'C'D'}}}}{{{V_{S.ABCD}}}} = \frac{{4xy}}{{15}}\,\,\,\left( 2 \right)\end{array}\)
Từ (1) và (2) \( \Rightarrow \frac{{x + y}}{{30}} = \frac{{4xy}}{{15}} \Rightarrow x + y = 8xy \Rightarrow x\left( {1 - 8y} \right) = - y \Rightarrow x = \frac{y}{{8y - 1}}\)\( \Rightarrow k = \frac{1}{{30}}\left( {\frac{y}{{8y - 1}} + y} \right)\)
\(\begin{array}{l}0 < x \le 1 \Rightarrow 0 < \frac{y}{{8y - 1}} \le 1\\ \Leftrightarrow \left\{ \begin{array}{l}\frac{y}{{8y - 1}} > 0\\\frac{y}{{8y - 1}} \le 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y < 0\\y > \frac{1}{8}\end{array} \right.\\\frac{y}{{8y - 1}} - 1 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y < 0\\y > \frac{1}{8}\end{array} \right.\\\frac{{7y - 1}}{{8y - 1}} \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y < 0\\y > \frac{1}{8}\end{array} \right.\\\left[ \begin{array}{l}y \le \frac{1}{8}\\y \ge \frac{1}{7}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y < 0\\y \ge \frac{1}{7}\end{array} \right.\end{array}\)
Kết hợp \(0 < y \le 1 \Rightarrow \frac{1}{7} \le y \le 1\)
Xét hàm số \(f\left( y \right) = \frac{y}{{8y - 1}} + y\) \(\left( {\frac{1}{7} \le y \le 1} \right)\)
Ta có: \(f'\left( y \right) = \frac{{ - 1}}{{{{\left( {8y - 1} \right)}^2}}} + 1 = \frac{{{{\left( {8y - 1} \right)}^2} - 1}}{{{{\left( {8y - 1} \right)}^2}}} = 0 \Rightarrow \left[ \begin{array}{l}8y - 1 = 1\\8y - 1 = - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}y = \frac{1}{4}\,\,\left( {tm} \right)\\y = 0\,\,\left( {ktm} \right)\end{array} \right.\)
BBT:
Từ BBT ta thấy \(\mathop {min}\limits_{\left[ {\frac{1}{7};1} \right]} f\left( y \right) = f\left( {\frac{1}{4}} \right) = \frac{1}{2}\)
Vậy \({k_{\min }} = \frac{1}{{30}}.\frac{1}{2} = \frac{1}{{60}}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com