a) Cho biểu thức \(A = \frac{{\sqrt x + 4}}{{\sqrt x + 2}}\). Tính giá trị biểu thức \(A\) khi \(x =
a) Cho biểu thức \(A = \frac{{\sqrt x + 4}}{{\sqrt x + 2}}\). Tính giá trị biểu thức \(A\) khi \(x = 36.\)
b) Rút gọn biểu thức \(B = \left( {\frac{{\sqrt x }}{{\sqrt x + 4}} + \frac{4}{{\sqrt x - 4}}} \right):\frac{{x + 16}}{{\sqrt x + 2}}\) (với \(x \ge 0;\,\,\,x \ne 16\))
c) Với các biểu thức \(A,\,\,B\) nói trên, hãy tìm các giá trị nguyên của \(x\) để giá trị của biểu thức \(B\left( {A - 1} \right)\) là số nguyên.
Đáp án đúng là: A
Quảng cáo
a) Thay giá trị \(x = 36\,\,\left( {tm} \right)\) vào biểu thức và tính giá trị của biểu thức \(A.\)
b) Quy đồng mẫu, biến đổi và rút gọn biểu thức đã cho.
c) Tính và biến đổi biểu thức \(B\left( {A - 1} \right)\) về dạng \(a + \frac{b}{{MS}}\) với \(a,\,\,b \in \mathbb{Z}.\)
Từ đó, biểu thức \(B\left( {A - 1} \right) \in \mathbb{Z} \Leftrightarrow b\,\, \vdots \,\,\,MS \Leftrightarrow MS \in U\left( b \right) \Rightarrow x = ...\)
Đối chiếu với điều kiện của \(x\) rồi kết luận.
Đáp án cần chọn là: A
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










