Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Để phương trình \(4\sin \left( {x + {\pi  \over 3}} \right)\cos \left( {x - {\pi  \over 6}} \right) =  - {a^2}

Câu hỏi số 206437:
Vận dụng

Để phương trình \(4\sin \left( {x + {\pi  \over 3}} \right)\cos \left( {x - {\pi  \over 6}} \right) =  - {a^2} + {{\sqrt 3 }}\sin 2x - \cos 2x + \cos x\) có nghiệm, tham số a phải thỏa mãn điều kiện:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:206437
Giải chi tiết

Hướng dẫn giải chi tiết

\(\eqalign{ & 4\sin \left( {x + {\pi \over 3}} \right)\cos \left( {x - {\pi \over 6}} \right) = - {a^2} + {{\sqrt 3 }}\sin 2x - \cos 2x + \cos x \cr & \Leftrightarrow 4\sin \left( {x + {\pi \over 3}} \right)\cos \left( {{\pi \over 6} - x} \right) = - {a^2} + {{\sqrt 3 }}\sin 2x - \cos 2x + \cos x \cr & \Leftrightarrow 4{\sin ^2}\left( {x + {\pi \over 3}} \right) = - {a^2} + {{\sqrt 3 }}\sin 2x - \cos 2x + \cos x \cr & \Leftrightarrow 4{\left( {{1 \over 2}\sin x + {{\sqrt 3 } \over 2}\cos x} \right)^2} = - {a^2} + {{\sqrt 3 }}\sin 2x - \cos 2x + \cos x \cr & \Leftrightarrow {\left( {\sin x + \sqrt 3 \cos x} \right)^2} = - {a^2} + {{\sqrt 3 }}\sin 2x - \cos 2x + \cos x \cr & \Leftrightarrow {\sin ^2}x + 3{\cos ^2}x + 2\sqrt 3 \sin x\cos x = - {a^2} + {{\sqrt 3 }}\sin 2x - \cos 2x + \cos x \cr} \)

\(\eqalign{ & \Leftrightarrow 1 + 2{\cos ^2}x + {{\sqrt 3 }}\sin 2x = - {a^2} + {{\sqrt 3 }}\sin 2x - 2{\cos ^2}x + 1 + \cos x \cr & \Leftrightarrow 4{\cos ^2}x - \cos x + {a^2} = 0 \cr} \)

Đặt \(\cos x = t\,\,\left( { - 1 \le t \le 1} \right)\) khi đó phương trình có dạng  \(4{t^2} - t + {a^2} = 0\)

Để phương trình có nghiệm thì:\(\Delta  = 1 - 16{a^2} \ge 0 \Leftrightarrow 16{a^2} \le 1 \Leftrightarrow  - {1 \over 4} \le a \le {1 \over 4}\)

Giả sử phương trình có hai nghiệm thỏa mãn \( - 1 \le {t_1} \le {t_2} \le 1 \Leftrightarrow \left\{ \begin{array}{l}{t_2} \ge {t_1} \ge  - 1\\{t_1} \le {t_2} \le 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left\{ \begin{array}{l}\left( {{t_2} + 1} \right)\left( {{t_1} + 1} \right) \ge 0\\{t_2} + {t_1} \ge  - 2\end{array} \right.\\\left\{ \begin{array}{l}\left( {{t_1} - 1} \right)\left( {{t_2} - 1} \right) \ge 0\\{t_1} + {t_2} \le 2\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left\{ \begin{array}{l}{t_1}{t_2} + \left( {{t_1} + {t_2}} \right) + 1 \ge 0\\{t_1} + {t_2} \ge  - 2\end{array} \right.\\\left\{ \begin{array}{l}{t_1}{t_2} - \left( {{t_1} + {t_2}} \right) + 1 \ge 0\\{t_1} + {t_2} \le 2\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{t_1}{t_2} + \left( {{t_1} + {t_2}} \right) + 1 \ge 0\\{t_1}{t_2} - \left( {{t_1} + {t_2}} \right) + 1 \ge 0\\ - 2 \le {t_1} + {t_2} \le 2\end{array} \right.\,\,\left( * \right)\)  

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{t_1} + {t_2} = \dfrac{1}{4}\\{t_1}{t_2} = \dfrac{{{a^2}}}{4}\end{array} \right.\)

\(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{{a^2}}}{4} + \dfrac{1}{4} + 1 \ge 0\\\dfrac{{{a^2}}}{4} - \dfrac{1}{4} + 1 \ge 0\\ - 2 \le \dfrac{1}{4} \le 2\,\,\left( {luon\,dung} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} + 5 > 0\,\,\left( {luon\,\,dung} \right)\\{a^2} + 3 > 0\,\,\left( {luon\,\,dung} \right)\end{array} \right.\)

Vậy \( - \dfrac{1}{4} \le a \le \dfrac{1}{4}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com