Đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) có bao nhiêu điểm mà tọa độ của nó đều là các
Đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) có bao nhiêu điểm mà tọa độ của nó đều là các số nguyên?
Đáp án đúng là: C
Quảng cáo
\(\frac{f\left( x \right)}{g\left( x \right)}=h\left( x \right)+\frac{c}{g\left( x \right)}\,\,\left( g\left( x \right)\ne 0 \right)\)với c là hằng số.\(\frac{f\left( x \right)}{g\left( x \right)}\in Z\Leftrightarrow \frac{c}{g\left( x \right)}\in Z\Leftrightarrow g\left( x \right)\in U\left( c \right)\)
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












