Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong một tổ học sinh có 5 em gái và 10 em trai. Thùy là 1 trong 5 em gái và Thiện là 1 trong 10 em

Câu hỏi số 215133:
Vận dụng

Trong một tổ học sinh có 5 em gái và 10 em trai. Thùy là 1 trong 5 em gái và Thiện là 1 trong 10 em trai. Thầy chủ nhiệm chọn ra 1 nhóm 5 bạn tham gia buổi văn nghệ tới. Hỏi thầy chủ nhiệm có bao nhiêu cách chọn mà trong đó có ít nhất một trong hai em Thùy và Thiện không được chọn?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:215133
Phương pháp giải

Do ở đây việc tìm trực tiếp sẽ có nhiều trường hợp nên ta sẽ giải quyết bài toán bằng cách gián tiếp, ta sẽ đi tìm bài toán đối. Ta tìm số cách chọn ra 5 bạn mà trong đó có cả bạn Thùy và Thiện.

Giải chi tiết

Bài toán đối: tìm số cách chọn ra 5 bạn mà trong đó có cả bạn Thùy và Thiện.

Bước 1: Chọn nhóm 3 em trong 13 em (13 em này không tình em Thùy và Thiện) có \(C_{13}^3 = 286\) cách.

Bước 2: Chọn 2 em Thùy và Thiện có 1 cách.

Vậy theo quy tắc nhân thì ta có 286 cách chọn 5 em mà trong đó có cả 2 em Thùy và Thiện.

Chọn 5 em bất kì trong số 15 em thì ta có: \(C_{15}^5 = 3003\) cách.

Vậy theo yêu cầu đề bài thì có tất cả 3003 – 286 = 2717 cách chọn mà trong đó có ít nhất một trong hai em Thùy Và Thiện không được chọn.

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com