Tham số phức \(m\) bằng bao nhiêu để phương trình: \({{z}^{2}}+mz+3i=0\) có tổng bình phương các
Tham số phức \(m\) bằng bao nhiêu để phương trình: \({{z}^{2}}+mz+3i=0\) có tổng bình phương các nghiệm bằng \(8\)
Đáp án đúng là: C
Quảng cáo
- Áp dụng định lý Vi-et cho phương trình bậc hai: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \frac{b}{a}\\{z_1}.{z_2} = \frac{c}{a}\end{array} \right.\)
- Thay vào biểu thức bài cho để tìm .
- Chưa áp dụng được định lý Vi-et.
- Biến đổi biểu thức tìm \(m\) sai.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












