Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tham số phức \(m\) bằng bao nhiêu để phương trình: \({{z}^{2}}+mz+3i=0\) có tổng bình phương các

Câu hỏi số 218213:
Vận dụng

Tham số phức \(m\) bằng bao nhiêu để phương trình: \({{z}^{2}}+mz+3i=0\) có tổng bình phương các nghiệm bằng \(8\)

 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:218213
Phương pháp giải

- Áp dụng định lý Vi-et cho phương trình bậc hai: \(\left\{ \begin{array}{l}{z_1} + {z_2} =  - \frac{b}{a}\\{z_1}.{z_2} = \frac{c}{a}\end{array} \right.\)

- Thay vào biểu thức bài cho để tìm .

Giải chi tiết

Ta có: \({{z}_{1}}+{{z}_{2}}=-m;{{z}_{1}}.{{z}_{2}}=3i\)

         \(\Rightarrow {{z}_{1}}^{2}+{{z}_{2}}^{2}=8\Leftrightarrow {{\left( {{z}_{1}}+{{z}_{2}} \right)}^{2}}-2{{z}_{1}}.{{z}_{2}}=8\)

        \(\begin{array}{l} \Leftrightarrow {m^2} - 2.3i = 8\\ \Leftrightarrow {m^2} = 8 + 6i = {\left( {3 + i} \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l}m = 3 + i\\m =  - 3 - i\end{array} \right.\end{array}\)

Chú ý khi giải

- Chưa áp dụng được định lý Vi-et.

- Biến đổi biểu thức tìm \(m\) sai.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com