Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\)

Câu hỏi số 222792:
Vận dụng cao

Giải phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:222792
Phương pháp giải

+ Nhận thấy 0 không phải là nghiệm của phương trình nên ta chia cả hai vế của phương trình cho \({x^2} \ne 0\)

+ Sau đó biến đổi phương trình để làm xuất hiện nhóm hạng tử giống nhau, đặt nhóm hạng tử giống nhau bằng ẩn mới, thay vào phương trình đã cho để được phương trình theo ẩn mới.

+ Giải phương trình theo ẩn mới

+ Thay giá trị vừa tìm được của ẩn mới vào biểu thức đặt ẩn để tìm ẩn ban đầu.

Giải chi tiết

Nhận thấy x = 0 không là nghiệm của phương trình nên chia hai vế của phương trình cho  \({x^2} \ne 0\) ta được:

\(\frac{{{x^2} - 3x + 3}}{x}.\frac{{{x^2} - 2x + 3}}{x} = 2 \Leftrightarrow \left( {x + \frac{3}{x} - 3} \right)\left( {x + \frac{3}{x} - 2} \right) = 2\)

Đặt  \(t = x + \frac{3}{x} – 3\) , ta có:

\(\begin{array}{l}pt \Leftrightarrow t\left( {t + 1} \right) = 2 \Leftrightarrow {t^2} + t - 2 = 0\\\,\,\,\,\,\,\, \Leftrightarrow \left( {t - 1} \right)\left( {t + 2} \right) = 0\\\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}t - 1 = 0\\t + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 2\end{array} \right..\end{array}\)

Với \(t = 1 \Rightarrow x + \frac{3}{x} - 3 = 1 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow\left( {x - 1} \right)\left( {x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)

Với \(t =  - 2 \Rightarrow x + \frac{3}{x} - 3 =  - 2 \Leftrightarrow {x^2} - x + 3 = 0 \Leftrightarrow {\left( {x - \frac{1}{2}} \right)^2} + \frac{{11}}{4} = 0\) vô nghiệm

 

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com