Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt

Câu hỏi số 223142:
Vận dụng cao

Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: \({x^4} - 10{x^2} + 2{m^2} + 7m = 0\), tính tổng lập phương của hai giá trị đó.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:223142
Phương pháp giải

Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\), đưa phương trình đã cho về phương trình bậc 2 ẩn t.

Tìm điều kiện của m để phương trình bậc hai ẩn t có hai nghiệm dương phân biệt.

Sử dụng tính chất của cấp số cộng \({u_{n - 1}} + {u_{n + 1}} = 2{u_n}\) để suy ra mối quan hệ giữa hai nghiệm của phương trình bậc hai ẩn t.

Sử dụng định lý Vi-et.

Giải chi tiết

Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\), khi đó phương trình trở thành    (*)

Phương trình đã cho có 4 nghiệm dương phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\S > 0\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}25 - 2{m^2} - 7m > 0\\10 > 0\\2{m^2} + 7m > 0\end{array} \right. \Leftrightarrow 0 < 2{m^2} + 7m < 25\)

Với điều kiện trên thì (*) có 2 nghiệm phân biệt dương là \({t_1},{t_2}\,\,\left( {{t_1} < {t_2}} \right)\). Do đó phương trình ban đầu có 4 nghiệm phân biệt được sắp xếp theo thứ tự tăng dần như sau \( - \sqrt {{t_2}} , - \sqrt {{t_1}} ,\sqrt {{t_1}} ,\sqrt {{t_2}} \)

Bốn nghiệm này lập thành cấp số cộng thì  \( - \sqrt {{t_1}}  + \sqrt {{t_2}}  = 2\sqrt {{t_1}}  \Leftrightarrow 3\sqrt {{t_1}}  = \sqrt {{t_2}}  \Leftrightarrow 9{t_1} = {t_2}\)

Mà theo định lí Vi-et ta có \({t_1} + {t_2} = 10 \Leftrightarrow 9{t_2} + {t_2} = 10 \Leftrightarrow {t_2} = 1 \Rightarrow {t_1} = 9\)

Lại có  \({t_1}{t_2} = 2{m^2} + 7m = 9 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - \frac{9}{2}\end{array} \right.\,\,\left( {tm} \right)\)

Do đó  \({1^3} + {\left( { - \frac{9}{2}} \right)^3} =  - \frac{{721}}{8}\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com