Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác ABC \(\left( \widehat{A\,\,}<{{90}^{0}} \right)\). Về phía ngoài của tam giác ABC dựng các

Câu hỏi số 223579:
Vận dụng cao

Cho tam giác ABC \(\left( \widehat{A\,\,}<{{90}^{0}} \right)\). Về phía ngoài của tam giác ABC dựng các hình vuông ABDE, ACFG. Gọi M là trung điểm của đoạn thẳng DF. Chứng minh rằng tam giác MBC cân tại M.

Quảng cáo

Câu hỏi:223579
Phương pháp giải

+ Vẽ thêm điểm H sao cho tam giác BHC vuông cân đỉnh B, H thuộc nửa mặt phẳng bờ BC có chứa điểm A.

+ Chứng minh M là trung điểm của HC để suy ra MB = MC.

+ Chứng minh MB vuông góc với MC để suy ra điều phải chứng minh.

Giải chi tiết

Trên nửa mặt phẳng bờ BC có chưa A dựng tam giác BHC vuông cân đỉnh B.

Xét tam giác BHD và tam giác BCA có: 

DB = BA (Vì ADBE là hình vuông)

\(\widehat{DBH}=\widehat{ABC}\) (vì cùng phụ với góc HBA)

BH = BC (vì tam giác BHC vuông cân đỉnh B)

Do đó: \(\Delta BHD=\Delta BCA\,\,(c.g.c)\), suy ra \(DH=AC,\widehat{BHD}=\widehat{BCA}\).

AC cắt HD tạ K, cắt BH tại I.

Xét tam giác IHK và tam giác ICB có: \(\widehat{HIK}=\widehat{CIB}\) (đối đỉnh), \(\widehat{BHD}=\widehat{BCA}\), do đó \(\widehat{HKI}=\widehat{IBC}={{90}^{0}}\Rightarrow KC\bot DH\)

Mặt khác \(KC\bot CF\), do đó DH // CF.

Ta có DH = CF (= AC) và DH // CF nên DHFC là hình bình hành.

Mà M là trung điểm của DF nên M là trung điểm của HC, suy ra tam giác MBC vuông cân đỉnh M.

 

 

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com