Nếu \(\int {f\left( x \right){\rm{d}}x} = \frac{1}{x} + \ln \left| {2x} \right| + C\) với \(x \in \left( {0; +
Nếu \(\int {f\left( x \right){\rm{d}}x} = \frac{1}{x} + \ln \left| {2x} \right| + C\) với \(x \in \left( {0; + \infty } \right)\)thì hàm số \(f\left( x \right)\) là
Đáp án đúng là: A
Quảng cáo
\(f\left( x \right)=\left( \int{f\left( x \right)} \right)'\) , sử dụng các công thức tính đạo hàm.
Lưu ý công thức đạo hàm của hàm hợp \(\left( \ln u \right)'=\frac{u'}{u}\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












