Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tìm tất cả những giá trị của m để hàm số \(y = \dfrac{{\cot 2x + m + 2}}{{\cot 2x - m}}\) đồng

Câu hỏi số 224690:
Vận dụng

Tìm tất cả những giá trị của m để hàm số \(y = \dfrac{{\cot 2x + m + 2}}{{\cot 2x - m}}\) đồng biến trên \(\left( {\dfrac{\pi }{6};\dfrac{\pi }{4}} \right)\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:224690
Phương pháp giải

Áp dụng lý thuyết về tính đồng biến của hàm số

Giải chi tiết

Đặt \(\cot 2x = t\left( {t \in R} \right)\). Khi đó bài toán trở thành tìm m để hàm số \(y = \dfrac{{t + m + 2}}{{t - m}}\) nghịch biến trên \(\left( {0;\dfrac{{\sqrt 3 }}{3}} \right)\)

Ta có: \(y' = \dfrac{{ - 2m - 2}}{{{{\left( {t - m} \right)}^2}}}\). Hàm số nghịch biến trên  \(\left( {0;\dfrac{{\sqrt 3 }}{3}} \right)\) khi \(\left\{ {\begin{array}{*{20}{l}}{\dfrac{{ - 2m - 2}}{{{{\left( {t - m} \right)}^2}}} \le 0}\\{m \notin \left( {0;\dfrac{{\sqrt 3 }}{3}} \right)}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge  - 1\\\left[ \begin{array}{l}m \le 0\\m \ge \dfrac{{\sqrt 3 }}{3}\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l} - 1 \le m \le 0\\m \ge \dfrac{{\sqrt 3 }}{3}\end{array} \right.\)

Khi \(m=-1\) hàm số trở thành \(y = \dfrac{{t + 1}}{{t + 1}} = 1 \Rightarrow \) hàm số ban đầu trở thành hàm hằng nên không thỏa mãn yêu cầu bài toán.

Vậy \(\left[ \begin{array}{l} - 1 < m \le 0\\m \ge \dfrac{{\sqrt 3 }}{3}\end{array} \right.\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com