Cho tứ diện \(ABCD\) có thể tích \(V.\) Gọi \({A_1}{B_1}{C_1}{D_1}\) là tứ diện với các đỉnh lần
Cho tứ diện \(ABCD\) có thể tích \(V.\) Gọi \({A_1}{B_1}{C_1}{D_1}\) là tứ diện với các đỉnh lần lượt là trọng tâm tam giác \(BCD,\,CDA,\,DAB,\,ABC\) và có thể tích \({V_1}.\) Gọi \({A_2}{B_2}{C_2}{D_2}\) là tứ diện với các đỉnh lần lượt là trọng tâm tam giác \({B_1}{C_1}{D_1},\,{C_1}{D_1}{A_1},\,{D_1}{A_1}{B_1},\,{A_1}{B_1}{C_1}\) và có thể tích \({V_2},...\) cứ như vậy cho đến tứ diện \({A_n}{B_n}{C_n}{D_n}\) có thể tích \({V_n}\) với \(n\) là một số tự nhiên lớn hơn \(1.\) Tính giá trị của \(P = \mathop {\lim }\limits_{n \to + \infty } \left( {{V_1} + {V_2} + ... + {V_n}} \right).\)
Đáp án đúng là: A
Quảng cáo
Bước 1. Tìm công thức truy hồi cho \({V_n}\) theo \(V.\) Cụ thể ta đi chứng minh \({V_n} = {\left( {\dfrac{1}{{27}}} \right)^n}V.\)
Bước 2. Sử dụng công thức tổng của cấp số nhân để tính tổng \({A_n}: = V + {V_1} + {V_2} + ... + {V_n}.\)
Bước 3. Tính giới hạn \(\mathop {\lim }\limits_{n \to + \infty } {A_n}.\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












