Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số nghiệm của phương trình \(\sqrt[3]{{x + 24}} + \sqrt {12 - x}  = 6\)là:                      

Câu hỏi số 225633:
Thông hiểu

Số nghiệm của phương trình \(\sqrt[3]{{x + 24}} + \sqrt {12 - x}  = 6\)là:                        

Đáp án đúng là: C

Quảng cáo

Câu hỏi:225633
Phương pháp giải

+ Phương trình có dạng: \(\sqrt[3]{{f(x)}} + \sqrt {g(x)} = c\), điều kiện \(g(x) \ge 0\)

+ Đặt \(\sqrt[3]{{f(x)}} = u,\,\,\sqrt {g(x)} = v \Rightarrow \)Hệ phương trình chứa u và v.

Giải chi tiết

Điều kiện: \(12 - x \ge 0 \Leftrightarrow x \le 12\)

Đặt \(\sqrt[3]{{x + 24}} = u;\,\,\sqrt {12 - x} = v \Rightarrow \)Hệ phương trình: \(\left\{ \begin{array}{l}u + v = 6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{u^3} + {v^2} = 36\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Từ (1) ta có v = 6 – u. Thay vào (2) ta được:

\({u^3} + {\left( {6 - u} \right)^2} = 36 \Leftrightarrow {u^3} + {u^2} - 12u = 0 \Leftrightarrow u\left( {{u^2} + u - 12} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}u = 0\\u = 3\\u = - 4\end{array} \right.\)

+) Với \(u = 0 \Leftrightarrow \sqrt[3]{{x + 24}} = 0 \Leftrightarrow x = - 24\,\,\,\left( {tm} \right)\)

+) Với \(u = 3 \Leftrightarrow \sqrt[3]{{x + 24}} = 3 \Leftrightarrow x + 24 = 27 \Leftrightarrow x = 3\,\,\,\left( {tm} \right)\)

+) Với \(u = - 4 \Leftrightarrow \sqrt[3]{{x + 24}} = - 4 \Leftrightarrow x + 24 = - 64 \Leftrightarrow x = - 88\,\,\,\,\,\left( {tm} \right)\)

Vậy phương trình có 3 nghiệm.

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com