Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số nghiệm của phương trình \(\sqrt {x - 1}  + \sqrt {x + 3}  + 2\sqrt {\left( {x + 3} \right)\left( {x - 1}

Câu hỏi số 225641:
Thông hiểu

Số nghiệm của phương trình \(\sqrt {x - 1}  + \sqrt {x + 3}  + 2\sqrt {\left( {x + 3} \right)\left( {x - 1} \right)}  = 4 - 2{\rm{x}}\) là:               

Đáp án đúng là: A

Quảng cáo

Câu hỏi:225641
Phương pháp giải

+ Phương trình có dạng: \(\alpha \left( {\sqrt {x - a} + \sqrt {x + b} } \right) + \beta \sqrt {\left( {x - a} \right)\left( {x + b} \right)} = f(x)\)

Điều kiện: \(\left\{ \begin{array}{l}x - a \ge 0\\x + b \ge 0\\f(x) \ge 0\end{array} \right.\)

+ Đặt: \(\sqrt {x - a} + \sqrt {x + b} = t\,\,\,\,\,\left( {t \ge 0} \right) \Rightarrow \sqrt {\left( {x - a} \right)\left( {x + b} \right)} \) theo t.

Giải chi tiết

Điều kiện: \(\left\{ \begin{array}{l}x - 1 \ge 0\\x + 3 \ge 0\\4 - 2{\rm{x}} \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\x \ge - 3\\x \le 2\end{array} \right. \Leftrightarrow 1 \le x \le 2\)

Đặt: \(\sqrt {x - 1} + \sqrt {x + 3} = t\,\,\,\left( {t \ge 0} \right)\) \(\begin{array}{l} \Leftrightarrow {\left( {\sqrt {x - 1} + \sqrt {x + 3} } \right)^2} = {t^2}\\ \Leftrightarrow x - 1 + x + 3 + 2\sqrt {\left( {x - 1} \right)\left( {x + 3} \right)} = {t^2}\\ \Leftrightarrow 2\sqrt {\left( {x - 1} \right)\left( {x + 3} \right)} = {t^2} - 2{\rm{x}} - 2\end{array}\)

Khi đó, phương trình trở thành: \(t + {t^2} - 2{\rm{x}} - 2 = 4 - 2{\rm{x}} \Leftrightarrow {t^2} + t - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\,\,\,\,\,\,\,\,\left( {tm} \right)\\t = - 3\,\,\,\,\left( {ktm} \right)\end{array} \right.\)

+) Với t = 2 \( \Leftrightarrow 2\sqrt {\left( {x - 1} \right)\left( {x + 3} \right)} = 2 - 2{\rm{x}}\)\( \Leftrightarrow \left\{ \begin{array}{l}2 - 2x \ge 0\\\left( {x - 1} \right)\left( {x + 3} \right) = {\left( {1 - {\rm{x}}} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 1\\{x^2} + 2x - 3 = {x^2} - 2{\rm{x}} + 1\end{array} \right. \Leftrightarrow x = 1\,\,\,\,\left( {tm} \right)\)

Vậy phương trình có duy nhất 1 nghiệm.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com