Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của phương trình \({x^2} + 3{\rm{x}} + 1 = \left( {x + 3} \right)\sqrt {{x^2} + 1} \)là:

Câu hỏi số 225670:
Thông hiểu

Tập nghiệm của phương trình \({x^2} + 3{\rm{x}} + 1 = \left( {x + 3} \right)\sqrt {{x^2} + 1} \)là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:225670
Phương pháp giải

+ Đặt \(\sqrt {{x^2} + 1} = u\left( {u \ge 0} \right);x + 3 = v\), đưa phương trình về dạng phương trình tích để tìm u, v

+ Thay giá trị u, v tìm được vào phương trình ban đầu suy ra x

Giải chi tiết

Ta có: \({x^2} + 3{\rm{x}} + 1 = \left( {x + 3} \right)\sqrt {{x^2} + 1} \Leftrightarrow \left( {{x^2} + 1} \right) + 3\left( {x + 3} \right) - 9 = \left( {x + 3} \right)\sqrt {{x^2} + 1} \)

Đặt \(\sqrt {{x^2} + 1} = u\left( {u \ge 0} \right);x + 3 = v\)

Phương trình trở thành:

\({u^2} + 3v - 9 = uv \Leftrightarrow {u^2} + 3v - 9 - uv = 0 \Leftrightarrow \left( {{u^2} - 9} \right) - v(u - 3) = 0 \Leftrightarrow \left( {u - 3} \right)\left( {u + 3 - v} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}u = 3\,\,\,\left( {tm} \right)\\u + 3 - v = 0\end{array} \right.\)

+) Với u = 3\( \Leftrightarrow \sqrt {{x^2} + 1} = 9 \Leftrightarrow {x^2} + 1 = 9 \Leftrightarrow x = \pm 2\sqrt 2 \)

+) Với u + 3 – v = 0\( \Leftrightarrow \sqrt {{x^2} + 1} + 3 - (x + 3) = 0 \Leftrightarrow \sqrt {{x^2} + 1} = x \Leftrightarrow {x^2} + 1 = {x^2}\)(vô nghiệm)

Vậy tập nghiệm của phương trình là: \(S = \left\{ { \pm 2\sqrt 2 } \right\}\)

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com