Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giới hạn \(\lim \frac{\sqrt{{{n}^{2}}-3n-5}-\sqrt{9{{n}^{2}}+3}}{2n-1}\)bằng?

Câu 226143: Giới hạn \(\lim \frac{\sqrt{{{n}^{2}}-3n-5}-\sqrt{9{{n}^{2}}+3}}{2n-1}\)bằng?

A.  \(\frac{5}{2}.\)                                              

B.  \(\frac{-5}{2}.\)                                

C.  \(1.\)                                               

D.  \(-1.\)

Câu hỏi : 226143

Phương pháp giải:

- Nhân liên hợp,


- Chia cả tử mẫu của phân thức cho \({{n}^{2}}\).

  • Đáp án : D
    (4) bình luận (0) lời giải

    Giải chi tiết:

    Cách 1:

    \(\begin{array}{l}
    \lim \frac{{\sqrt {{n^2} - 3n - 5} - \sqrt {9{n^2} + 3} }}{{2n - 1}} = \lim \frac{{\left( {\sqrt {{n^2} - 3n - 5} - \sqrt {9{n^2} + 3} } \right).\left( {\sqrt {{n^2} - 3n - 5} + \sqrt {9{n^2} + 3} } \right)}}{{\left( {\sqrt {{n^2} - 3n - 5} + \sqrt {9{n^2} + 3} } \right).(2n - 1)}}\\
    = \lim \frac{{({n^2} - 3n - 5) - (9{n^2} + 3)}}{{\left( {\sqrt {{n^2} - 3n - 5} + \sqrt {9{n^2} + 3} } \right).(2n - 1)}} = \lim \frac{{ - 8{n^2} - 3n - 8}}{{\left( {\sqrt {{n^2} - 3n - 5} + \sqrt {9{n^2} + 3} } \right).(2n - 1)}}\\
    = \lim \frac{{ - 8 - \frac{3}{n} - \frac{8}{{{n^2}}}}}{{\left( {\sqrt {1 - \frac{3}{n} - \frac{5}{{{n^2}}}} + \sqrt {9 + \frac{3}{{{n^2}}}} } \right)\left( {2 - \frac{1}{n}} \right)}} = \frac{{ - 8}}{{4.2}} = - 1.
    \end{array}\)

    Cách 2: Chia cả tử và mẫu cho n.

    \(\lim \frac{\sqrt{{{n}^{2}}-3n-5}-\sqrt{9{{n}^{2}}+3}}{2n-1}=\lim \frac{\sqrt{1-\frac{3}{n}-\frac{5}{{{n}^{2}}}}-\sqrt{9+\frac{3}{{{n}^{2}}}}}{2-\frac{1}{n}}=\lim \frac{1-3}{2}=-1\)

    Chọn D.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com