Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chọn giá trị của \(f\left( 0 \right)\) để hàm số \(f\left( x \right) = {{\root 3 \of {2x + 8}  - 2} \over

Câu hỏi số 229852:
Thông hiểu

Chọn giá trị của \(f\left( 0 \right)\) để hàm số \(f\left( x \right) = {{\root 3 \of {2x + 8}  - 2} \over {\sqrt {3x + 4}  - 2}}\) liên tục tại điểm x = 0.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:229852
Phương pháp giải

Hàm số \(y = f\left( x \right)\) liên tục tại điểm \(x = 0\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\)

Giải chi tiết

\(\eqalign{  & \mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} {{\root 3 \of {2x + 8}  - 2} \over {\sqrt {3x + 4}  - 2}} = \mathop {\lim }\limits_{x \to 0} {{\left( {2x + 8 - 8} \right)\left( {\sqrt {3x + 4}  + 2} \right)} \over {\left( {{{\root 3 \of {2x + 8} }^2} + 2\root 3 \of {2x + 8}  + 4} \right)\left( {3x + 4 - 4} \right)}}  \cr   &  = \mathop {\lim }\limits_{x \to 0} {{2\left( {\sqrt {3x + 4}  + 2} \right)} \over {3\left( {{{\root 3 \of {2x + 8} }^2} + 2\root 3 \of {2x + 8}  + 4} \right)}} = {{2.\left( {2 + 2} \right)} \over {3\left( {{2^2} + 2.2 + 4} \right)}} = {2 \over 9} \cr} \)

Để hàm số liên tục tại điểm \(x = 0\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow f\left( 0 \right) = {2 \over 9}\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com