Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giá trị nhỏ nhất của hàm số \(f(x) = x + {4 \over {x - 1}}\) trên \((1, + \infty )\) là:

Câu hỏi số 231423:
Thông hiểu

Giá trị nhỏ nhất của hàm số \(f(x) = x + {4 \over {x - 1}}\) trên \((1, + \infty )\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:231423
Phương pháp giải

Thêm, bớt để xuất hiện các số dương.

Áp dụng bất đẳng thức Cauchy cho hai số dương \(x - 1\) và \({4 \over {x - 1}}\)

Giải chi tiết

Ta có: \(f(x) = x - 1 + {4 \over {x - 1}} + 1\)

Trên \((1, + \infty )\) ta có hai số dương \(x - 1\) và \({4 \over {x - 1}}\).

Áp dụng bất đẳng thức Cauchy cho hai số dương ta có: \(\left( {x - 1} \right) + {4 \over {x - 1}} \ge 2\sqrt {\left( {x - 1} \right).{4 \over {x - 1}}}  = 4\).

Suy ra \(f\left( x \right) \ge 4 + 1 = 5\).

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com