Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x +

Câu hỏi số 232083:
Thông hiểu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}\,\,\,khi\,\,x \ne 1\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\). Giá trị của \(f'\left( 1 \right)\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:232083
Phương pháp giải

Đạo hàm của hàm số \(y=f\left( x \right)\) tại điểm \(x={{x}_{0}}\) là \(f'\left( {{x}_{0}} \right)=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}\) (nếu tồn tại).

Giải chi tiết

Ta có: \(f'\left( 1 \right)=\underset{x\to 1}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 1 \right)}{x-1}=\underset{x\to 1}{\mathop{\lim }}\,\frac{\frac{{{x}^{3}}-4{{x}^{2}}+3x}{{{x}^{2}}-3x+2}}{x-1}=\underset{x\to 1}{\mathop{\lim }}\,\frac{x\left( x-3 \right)\left( x-1 \right)}{{{\left( x-1 \right)}^{2}}\left( x-2 \right)}=\underset{x\to 1}{\mathop{\lim }}\,\frac{x\left( x-3 \right)}{\left( x-1 \right)\left( x-2 \right)}=-\infty \)

Vậy hàm số không có đạo hàm tại x = 1.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com