Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho  ∆ABC vuông tại A, AH\(\bot \)BC (H\(\in \)BC).AB = 9cm, AH = 7,2cm, HC = 9,6cm. a/ Tính cạnh AC. b/

Câu hỏi số 233887:
Vận dụng

Cho  ∆ABC vuông tại A, AH\(\bot \)BC (H\(\in \)BC).AB = 9cm, AH = 7,2cm, HC = 9,6cm.

a/ Tính cạnh AC.

b/ Chứng minh tích các cạnh : AH.BC = AB.AC

Đáp án đúng là: B

Quảng cáo

Câu hỏi:233887
Phương pháp giải

a) Áp dụng định lí Py-ta-go trong tam giác vuông AHC ta tính được độ dài cạnh AC

b) + Áp dụng định lí Py-ta-go trong tam giác vuông ABC ta tính được độ dài cạnh BC

+ Tính các tích: AH.BC; AB.AC, từ đó suy ra điều phải chứng minh

Giải chi tiết

a) Xét ∆AHC vuông tại H, theo định lý Py-ta-go  ta có :

\(\begin{align}  & A{{C}^{2}}=A{{H}^{2}}+H{{C}^{2}} \\  & A{{C}^{2}}={{7,2}^{2}}+{{9,6}^{2}} \\  & A{{C}^{2}}=144 \\  & \Rightarrow AC=\sqrt{144}=12cm \\ \end{align}\)

b) Xét \(\Delta ABC\)  vuông tại A, theo định lý Py-ta-go  ta có:

\(\begin{align}  & B{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}} \\  & B{{C}^{2}}={{9}^{2}}+{{12}^{2}} \\  & B{{C}^{2}}=225 \\  & \Rightarrow BC=\sqrt{225}=15cm \\ \end{align}\)

Ta có: \(AH.BC=7,2.15=108\)  và \(AB.AC=9.12=108\)

Vậy AH.BC = AB.AC.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com