Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( 1;2;1 \right),\,\,B\left( 3;-\,1;1

Câu hỏi số 235698:
Vận dụng cao

Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( 1;2;1 \right),\,\,B\left( 3;-\,1;1 \right)\) và \(C\left( -\,1;-\,1;1 \right).\) Gọi \(\left( {{S}_{1}} \right)\) là mặt cầu có tâm \(A,\) bán kính bằng \(2;\) \(\left( {{S}_{2}} \right)\) và \(\left( {{S}_{3}} \right)\) là hai mặt cầu có tâm lần lượt là \(B,\,\,C\) và bán kính đều bằng \(1.\) Hỏi có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu \(\left( {{S}_{1}} \right),\,\,\left( {{S}_{2}} \right),\,\,\left( {{S}_{3}} \right)\,\,?\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:235698
Giải chi tiết

Gọi phương trình mặt phẳng cần tìm là \(\left( P \right):ax+by+cz+d=0.\)

Vì\(d\left( {B;\left( P \right)} \right) \)=\( d\left( {C ;\left( P \right)} \right) = 1\) suy ra \(mp\,\,\left( P \right)\)//\(BC\) hoặc đi qua trung điểm của \(BC.\)

TH1. Với \(mp\,\,\left( P \right)\)//\(BC\)\(\Rightarrow \,\,a=0\Rightarrow \,\,\left( P \right):by+cz+d=0\) suy ra \(d\left( A;\left( P \right) \right)=\frac{\left| 2b+c+d \right|}{\sqrt{{{b}^{2}}+{{c}^{2}}}}=2\)

Và \(d\left( B;\left( P \right) \right)=\frac{\left| -\,b+c+d \right|}{\sqrt{{{b}^{2}}+{{c}^{2}}}}=1\)\(\Rightarrow \)\(\left\{ \begin{align} & \left| 2b+c+d \right|=2\left| -\,b+c+d \right| \\& \left| -\,b+c+d \right|=\sqrt{{{b}^{2}}+{{c}^{2}}} \\\end{align} \right.\Leftrightarrow \)\(\left[ \begin{array}{l}
\left\{ \begin{array}{l}
4b = c + d\\
c + d = 0
\end{array} \right.\\
\left| { - \,b + c + d} \right| = \sqrt {{b^2} + {c^2}} 
\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}
3\left| b \right| = \sqrt {{b^2} + {c^2}} \\
\left| b \right| = \sqrt {{b^2} + {c^2}}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
8{b^2} = {c^2} \Rightarrow c = \pm \,2\sqrt 2 \,b\\
c = 0 \Rightarrow d = 0
\end{array} \right.\)suy ra có ba mặt phẳng thỏa mãn. 

TH2. Mặt phẳng \(\left( P \right)\) đi qua trung điểm \(BC\)\(\Rightarrow \)\(\left( P \right):a\left( x-1 \right)+b\left( y+1 \right)+c\left( z-1 \right)=0\)

Do đó \(d\left( A;\left( P \right) \right)=\frac{3\left| b \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}=2;\,\,\,d\left( B;\left( P \right) \right)=\frac{2\left| a \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}=1\)

Suy ra \(\left\{ \begin{align} & 3\left| b \right|=4\left| a \right| \\& 2\left| a \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}} \\\end{align} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
3\left| b \right| = 4\left| a \right|\\
2\left| a \right| = \sqrt {{a^2} + {b^2} + {c^2}}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
3\left| b \right| = 4\left| a \right|\\
3{a^2} = {b^2} + {c^2}
\end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right).\)

Chọn \(a=3\) suy ra 

\(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}
\left| b \right| = 4\\
{b^2} + {c^2} = 27
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
b = \pm \,4\\
{c^2} = 11
\end{array} \right. \Rightarrow \left( {a;b;c} \right) = \left\{ \begin{array}{l}
\left( {3;4;\sqrt {11} } \right),\,\,\left( {3; - \,4;\sqrt {11} } \right)\\
\left( {3;4; - \,\sqrt {11} } \right),\,\,\left( {3; - \,4; - \,\sqrt {11} } \right)
\end{array} \right\}.\)

Vậy có tất cả 7 mặt phẳng thỏa mãn yêu cầu bài toán.

Chọn B.

 

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com