Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(I = \int\limits_0^4 {{x^3}\sqrt {{x^2} + 9} dx} \). Nếu đặt \(t = \sqrt {{x^2} + 9} \) thì ta có kết

Câu hỏi số 238334:
Nhận biết

Cho \(I = \int\limits_0^4 {{x^3}\sqrt {{x^2} + 9} dx} \). Nếu đặt \(t = \sqrt {{x^2} + 9} \) thì ta có kết quả nào sau đây?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:238334
Phương pháp giải

Đặt \(t = \sqrt {{x^2} + 9} \)

Giải chi tiết

\(I = \int\limits_0^4 {{x^3}\sqrt {{x^2} + 9} dx}  = \int\limits_0^4 {{x^2}\sqrt {{x^2} + 9} xdx} \)

Đặt \(t = \sqrt {{x^2} + 9}  \Leftrightarrow {t^2} = {x^2} + 9 \Leftrightarrow tdt = xdx\) và \({x^2} = {t^2} - 9\), đổi cận \(\left\{ \matrix{  x = 0 \Rightarrow t = 3 \hfill \cr   x = 4 \Rightarrow t = 5 \hfill \cr}  \right.\) . Khi đó ta có:

\(I = \int\limits_3^5 {\left( {{t^2} - 9} \right)t.tdt}  = \int\limits_3^5 {\left( {{t^2} - 9} \right){t^2}dt} \)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com