Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) vuông cân tại \(A\) có \(AB = AC = 12\). Lấy một điểm \(M\) thuộc cạnh huyền

Câu hỏi số 242422:
Vận dụng

Cho tam giác \(ABC\) vuông cân tại \(A\) có \(AB = AC = 12\). Lấy một điểm \(M\) thuộc cạnh huyền \(BC\) và gọi \(H\) là hình chiếu của \(M\) lên cạnh góc vuông \(AB\). Quay tam giác \(AMH\) quanh trục là đường thẳng \(AB\) tạo thành mặt nón tròn xoay \(\left( N \right)\), hỏi thế tích \(V\) của khối nón tròn xoay \(\left( N \right)\) lớn nhất là bao nhiêu?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:242422
Phương pháp giải

Đặt \(HM = x\), lập hàm thể tích khối nón \(\left( N \right)\) và tìm GTLN của hàm số đó.

Giải chi tiết

Quay tam giác vuông \(AMH\) quanh trục \(AB\) ta được khối nón có đỉnh \(A\), bán kính đát \(HM\) và đường cao \(AH\) , khi đó ta có thể tích của khối nón tròn xoay \(\left( N \right)\) là \(V = \frac{1}{3}\pi H{M^2}.AH\)

Đặt \(HM = x,\,\,\left( {0 \le x \le 12\sqrt 2 } \right)\) ta có \(\Delta BHM\) vuông cân tại \(H\) nên \(BH = HM = x \Rightarrow AH = AB - BH = 12 - x\)

Khi đó \(V = \frac{1}{3}\pi {x^2}\left( {12 - x} \right)\)

Xét hàm số \(f\left( x \right) = {x^2}\left( {12 - x} \right)\)  với \(x \in \left[ {0;12\sqrt 2 } \right]\)

\(\begin{array}{l}f'\left( x \right) = 2x\left( {12 - x} \right) - {x^2} =  - 3{x^2} + 24x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 8\end{array} \right.\\\left\{ \begin{array}{l}f\left( 0 \right) = 0\\f\left( {12} \right) = 0\\f\left( 8 \right) = 256\end{array} \right. \Rightarrow \mathop {\max }\limits_{\left[ {0;12\sqrt 2 } \right]} f\left( x \right) = 256\\ \Rightarrow {V_{max}} = \frac{1}{3}\pi .256 = \frac{{256\pi }}{3}\end{array}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com