Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính tích phân \(I=\int\limits_{1}^{2}{\ln \left( 1+x \right)\,\text{d}x}.\)

Câu hỏi số 243949:
Thông hiểu

Tính tích phân \(I=\int\limits_{1}^{2}{\ln \left( 1+x \right)\,\text{d}x}.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:243949
Phương pháp giải

Sử dụng phương pháp từng phần hoặc máy tính casio để tính tích phân

Giải chi tiết

 

Đặt\(\left\{ \begin{array}{l}
u = \ln \left( {1 + x} \right)\\
{\rm{d}}v = {\rm{d}}x
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{\rm{d}}u = \frac{{{\rm{d}}x}}{{x + 1}}\\
v = x
\end{array} \right.,\) khi đó \(I=\left. x.\ln \left( 1+x \right) \right|_{1}^{2}-\int\limits_{1}^{2}{\frac{x\text{d}x}{x+1}}=2.\ln 3-\ln 2-\int\limits_{1}^{2}{\frac{x}{x+1}\text{d}x}.\)

Ta có \(\int\limits_{1}^{2}{\frac{x}{x+1}\text{d}x}=\int\limits_{1}^{2}{\frac{x+1-1}{x+1}\text{d}x}=\int\limits_{1}^{2}{\left( 1-\frac{1}{x+1} \right)\text{d}x}=\left. \left( x-\ln \left| x+1 \right| \right) \right|_{1}^{2}=2-\ln 3-1+\ln 2=1+\ln 2-\ln 3\)

Vậy \(I=2.\ln 3-\ln 2-\left( 1+\ln 2-\ln 3 \right)=3.\ln 3-2.\ln 2-1=\ln \frac{27}{4}-1.\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com