Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+6z-13=0\) và

Câu hỏi số 249332:
Vận dụng cao

 Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+6z-13=0\) và đường thẳng \(d:\,\,\frac{x+1}{1}=\frac{y+2}{1}=\frac{z-1}{1}\). Tọa độ điểm M trên đường thẳng d sao cho từ M kẻ được 3 tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm) thỏa mãn \(\widehat{AMB}={{60}^{0}};\,\,\widehat{BMC}={{90}^{0}};\,\widehat{CMA}={{120}^{0}}\) có dạng \(M\left( a;b;c \right)\) với \(a<0\). Tổng \(a+b+c\) bằng:          

Đáp án đúng là: B

Quảng cáo

Câu hỏi:249332
Phương pháp giải

Tính độ dài đoạn thẳng IM với I là tâm mặt cầu.

Tham số hóa tọa độ điểm M, sau đó dựa vào độ dài IM để tìm điểm M.

Giải chi tiết

Mặt cầu (S) có tâm \(I\left( 1;2;-3 \right)\), bán kính \(R=3\sqrt{3}\)

Đặt \(MA=MB=MC=a\).

Tam giác \(MAB\) đều \(\Rightarrow AB=a\)

Tam giác \(MBC\) vuông tại M \(\Rightarrow BC=a\sqrt{2}\)

Tam giác \(MCA\) có \(\widehat{CMA}={{120}^{0}}\Rightarrow AC=a\sqrt{3}\)

Xét tam giác \(ABC\) có \(A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}}\Rightarrow \Delta ABC\) vuông tại B \(\Rightarrow \Delta ABC\) ngoại tiếp đường tròn nhỏ có đường kính \(AC\)\(\Rightarrow HA=\frac{1}{2}AC=\frac{a\sqrt{3}}{2}\)

Xét tam giác vuông \(IAM\) có:

\(\frac{1}{H{{A}^{2}}}=\frac{1}{A{{M}^{2}}}+\frac{1}{I{{A}^{2}}}\Rightarrow \frac{4}{3{{a}^{2}}}=\frac{1}{{{a}^{2}}}+\frac{1}{27}\Leftrightarrow \frac{1}{3{{a}^{2}}}=\frac{1}{27}\Leftrightarrow a=3=MA\)

 

\(\Rightarrow I{{M}^{2}}=M{{A}^{2}}+I{{A}^{2}}={{3}^{2}}+27=36\)

\(\begin{array}{l}
M \in \left( d \right) \Rightarrow M\left( { - 1 + t; - 2 + t;1 + t} \right) \Leftrightarrow I{M^2} = {\left( {t - 2} \right)^2} + {\left( {t - 4} \right)^2} + {\left( {t + 4} \right)^2} = 36\\
\Leftrightarrow 3{t^2} - 4t = 0\\
\Leftrightarrow \left[ \begin{array}{l}
t = 0\\
t = \frac{4}{3}
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
M\left( { - 1; - 2;1} \right)\\
M\left( {\frac{1}{3}; - \frac{2}{3};\frac{7}{3}} \right)\,\,\,\left( {ktm} \right)
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
a = - 1\\
b = - 2\\
c = 1
\end{array} \right. \Rightarrow a + b + c = - 2
\end{array}\)

 

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com