Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( 1;1;1 \right)\) và đường thẳng

Câu hỏi số 250231:
Vận dụng cao

Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( 1;1;1 \right)\) và đường thẳng \(d:\dfrac{x-1}{1}=\dfrac{y}{-\,2}=\dfrac{z-1}{9}.\) Biết đường thẳng \(\Delta \) qua \(A,\) cắt \(d\) và khoảng cách từ gốc tọa độ đến \(\Delta \) nhỏ nhất, \(\Delta \) có một vectơ chỉ phương là \(\left( 1;a;b \right).\) Tổng \(a+b\) là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:250231
Phương pháp giải

Dựng hình, đưa về bài toán tìm điểm để khoảng cách từ một điểm đến một mặt phẳng nhỏ nhất

Giải chi tiết

Đường thẳng \(d\) đi qua \(B\left( 1;0;1 \right),\) có vectơ chỉ phương \(\vec{u}=\left( 1;-\,2;9 \right)\)\(\Rightarrow \,\,\left[ \overrightarrow{AB};\vec{u} \right]=\left( 9;0;-\,1 \right).\)

Phương trình mặt phẳng \(\left( \alpha  \right)\) chứa \(d\) và đi qua \(A\) là \(\left( \alpha  \right):9x-z-8=0.\)

Gọi \(I\) là hình chiếu của \(O\) trên \(\Delta ,\) \(H\) là hình chiếu của \(O\) trên \(\left( \alpha  \right).\)

Ta có \(d\left( O;\left( \Delta  \right) \right)=OI\le OH\Rightarrow \,\,{{d}_{\min }}=OH\)\(\Leftrightarrow \)\(H\) là hình chiếu của \(O\) trên \(\left( \alpha  \right).\)

Phương trình đường thẳng \(OH\) là \(\left\{ \begin{align}  x=9t \\  y=0 \\  z=-\,t \\ \end{align} \right.\) \(\Rightarrow \,\,H\left( 9t;0;-\,t \right)\in \left( \alpha  \right)\) \(\Rightarrow t=\dfrac{4}{41}.\)

Vậy \(H\left( \frac{36}{41};0;-\,\frac{4}{41} \right)\Rightarrow \overrightarrow{HA}=\left( \dfrac{5}{41};1;\dfrac{45}{41} \right)=\dfrac{5}{41}\left( 1;\dfrac{41}{5};9 \right)\Rightarrow \left\{\begin{align}  a=\frac{41}{5} \\  b=9 \\ \end{align} \right..\)

\(\Rightarrow a+b=\dfrac{41}{5}+9=\dfrac{86}{5}.\)

Chọn A

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com