Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=-\,{{x}^{2}}-1.\) Với các số thực

Câu hỏi số 251031:
Nhận biết

Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=-\,{{x}^{2}}-1.\) Với các số thực dương \(a,\,\,b\) thỏa mãn \(a<b.\) Giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ a;b \right]\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:251031
Phương pháp giải

Hàm số đơn điệu trên đoạn nên giá trị nhỏ nhất – lớn nhất sẽ đạt tại đầu mút của đoạn

Giải chi tiết

Ta có \({f}'\left( x \right)=-\,{{x}^{2}}-1<0;\,\,\forall x\in \left( a;b \right)\) suy ra \(f\left( x \right)\) là hàm số nghịch biến trên \(\left[ a;b \right].\)

Mà \(a<b\)\(\Rightarrow \,\,f\left( a \right)>f\left( b \right).\) Vậy \(\underset{\left[ a;b \right]}{\mathop{\min }}\,f\left( x \right)=f\left( b \right).\)

Chọn A

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com