Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

Câu hỏi số 251951:
Thông hiểu

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({{d}_{1}}:\,\,\frac{x-1}{2}=\frac{y}{1}=\frac{z}{3}\), \({{d}_{2}}:\,\,\left\{ \begin{align}  x=1+t \\  y=2+t \\  z=m \\ \end{align} \right.\). Gọi S là tập hợp tất cả các số m sao cho đường thẳng \({{d}_{1}}\) và \({{d}_{2}}\) chéo nhau và khoảng cách giữa chúng bằng \(\frac{5}{\sqrt{19}}\). Tính tổng các phần tử của S.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:251951
Phương pháp giải

Sử dụng công thức tính khoảng cách giữa hai đường thẳng chéo nhau: \(d\left( {{d}_{1}};{{d}_{2}} \right)=\frac{\left| \overrightarrow{{{M}_{1}}{{M}_{2}}}.\left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right] \right|}{\left| \left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right] \right|}\)

Với  \(\overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}}\) lần lượt là các VTCP của \({{d}_{1}};{{d}_{2}};\,\,{{M}_{1}}\in {{d}_{1}};\,\,{{M}_{2}}\in {{d}_{2}}.\)

Giải chi tiết

Ta có\(\overrightarrow{{{u}_{1}}}=\left( 2;1;3 \right);\overrightarrow{{{u}_{2}}}=\left( 1;1;0 \right)\) lần lượt là các VTCP của \({{d}_{1}};{{d}_{2}}\). Ta có \(\left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right]=\left( -3;3;1 \right)\)

Lấy \({{M}_{1}}\left( 1;0;0 \right)\in {{d}_{1}};\,\,{{M}_{2}}\left( 1;2;m \right)\in {{d}_{2}}\Rightarrow \overrightarrow{{{M}_{1}}{{M}_{2}}}=\left( 0;2;m \right)\)

\(\Rightarrow d\left( {{d}_{1}};{{d}_{2}} \right)=\frac{\left| \overrightarrow{{{M}_{1}}{{M}_{2}}}.\left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right] \right|}{\left| \left[ \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right] \right|}=\frac{\left| 6+m \right|}{\sqrt{19}}=\frac{5}{\sqrt{19}}\Leftrightarrow \left[ \begin{align}  m=-1 \\  m=-11 \\ \end{align} \right.\Rightarrow S=\left\{ -1;-11 \right\}\)

Chọn B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com