Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt cầu \(\left( S \right):{{\left( x-1

Câu hỏi số 252890:
Vận dụng cao

Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=9\) và hai điểm \(M\left( 4;-\,4;2 \right),\,\,N\left( 6;0;6 \right).\) Gọi \(E\) là điểm thuộc mặt cầu \(\left( S \right)\) sao cho \(EM+EN\) đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu \(\left( S \right)\) tại \(E.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:252890
Phương pháp giải

 Dựng hình, áp dụng công thức trung tuyến để biện luận giá trị lớn nhất 

Giải chi tiết

Xét mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=9\) có tâm \(I\left( 1;2;2 \right),\) bán kính \(R=3.\)

Ta có \(MI=NI=3\sqrt{5}>3=R\)\(\Rightarrow \,\,M,\,\,N\) nằm bên ngoài khối cầu \(\left( S \right).\)

Gọi \(H\) là trung điểm của \(MN\)\(\Rightarrow \,\,H\left( 5;-\,2;4 \right)\) và \(E{{H}^{2}}=\frac{E{{M}^{2}}+E{{N}^{2}}}{2}-\frac{M{{N}^{2}}}{4}.\)

Lại có \({{\left( EM+EN \right)}^{2}}\le \left( {{1}^{2}}+{{1}^{2}} \right)\left( E{{M}^{2}}+E{{N}^{2}} \right)=2\left( E{{H}^{2}}+\frac{M{{N}^{2}}}{4} \right)\).

Để \({{\left\{ EM+EN \right\}}_{\max }}\Leftrightarrow E{{H}_{\max }}\)

Khi và chỉ khi \(E\) là giao điểm của \(IH\) và mặt cầu \(\left( S \right)\). Gọi \(\left( P \right)\) là mặt phẳng tiếp diện của \(\left( S \right)\) tại \(E\Rightarrow \,\,{{\vec{n}}_{\left( P \right)}}=a.\overrightarrow{EI}=b.\overrightarrow{IH}=b.\left( 4;-\,4;2 \right).\)

Dựa vào các đáp án ta thấy ở đáp án D, \({{\overrightarrow{n}}_{\left( P \right)}}=\left( 2;-2;1 \right)=\frac{1}{2}\left( 4;-4;2 \right)\)

Vậy phương trình mặt phẳng cần tìm là \(2x-2y+z+9=0.\)


Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com