Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, \(AB=a\sqrt{3},\,\,BC=2a\),

Câu hỏi số 255249:
Vận dụng

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, \(AB=a\sqrt{3},\,\,BC=2a\), đường thẳng AC’ tạo với mặt phẳng (BCC’B’) một góc 300 (tham khảo hình vẽ). Diện tích mặt cầu ngoại tiếp lăng trụ đã cho bằng 

Đáp án đúng là: B

Quảng cáo

Câu hỏi:255249
Phương pháp giải

 Diện tích mặt cầu bán kính R: \(S=4\pi {{R}^{2}}\). 

Giải chi tiết

Gọi H, H’ lần lượt là trung điểm của BC và B’C’ \(\Rightarrow HH'\bot \left( ABC \right)\) và \(HH'\bot \left( A'B'C' \right)\).

Gọi I là trung điểm của HH’. Mặt khác \(\Delta ABC\) vuông tại A, \(I\in HH'\Rightarrow \left\{ \begin{align} & IA=IB=IC \\ & IA'=IB'=IC' \\ \end{align} \right.\)

Dễ dàng chứng minh được \(\Delta BHI=\Delta B'H'I\,\,\left( c.g.c \right)\Rightarrow IB=IB'\)

\(\Rightarrow IA=IB=IC=IA'=IB'=IC'\) hay I là tâm mặt cầu ngoại tiếp lăng trụ ABC.A’B’C’.

Kẻ \(AK\bot BC\) ta có \(AK\bot \left( BCC'B' \right)\Rightarrow \widehat{\left( AC';\left( BCC'B' \right) \right)}=\widehat{\left( AC';KC' \right)}=\widehat{AC'K}={{30}^{0}}\).

Có \(AC=A'C'=\sqrt{4{{a}^{2}}-3{{a}^{2}}}=a\)

Ta có \(AK=\frac{AC.AB}{BC}=\frac{a.a\sqrt{3}}{2a}=\frac{a\sqrt{3}}{2}\)

\(\begin{align} & \Rightarrow AC'=\frac{AK}{\sin 30}=a\sqrt{3} \\ & \Rightarrow AA'=\sqrt{AC{{'}^{2}}-A'C{{'}^{2}}}=\sqrt{3{{a}^{2}}-{{a}^{2}}}=a\sqrt{2}=HH' \\ & \Rightarrow HI=\frac{1}{2}HH'=\frac{a}{\sqrt{2}}\Rightarrow BI=\sqrt{{{a}^{2}}+\frac{{{a}^{2}}}{2}}=\frac{a\sqrt{6}}{2}=R \\ & \Rightarrow {{S}_{mat\,cau}}=4\pi {{\left( \frac{a\sqrt{6}}{2} \right)}^{2}}=6\pi {{a}^{2}} \\ \end{align}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com