Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):\,\,\left( {{m^2} + m + 1} \right)x

Câu hỏi số 260431:
Vận dụng cao

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):\,\,\left( {{m^2} + m + 1} \right)x + 2\left( {{m^2} - 1} \right)y + 2\left( {m + 2} \right)z + {m^2} + m + 1 = 0\) luôn chứa đường thẳng \(\Delta \) cố định khi \(m\) thay đổi. Tính khoảng cách từ gốc tọa độ đến \(\Delta \).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:260431
Phương pháp giải

+) Đưa phương trình về dạng phương trình bậc hai ẩn \(m\) . Tìm điều kiện để phương trình ẩn \(m\) nghiệm đúng với mọi \(x;y;z\). Suy ra phương trình đường thẳng \(\Delta \).

+) Sử dụng công thức tính khoảng cách từ 1 điểm M đến một đường thẳng d:

\(d\left( {M;d} \right) = \frac{{\left| {\left[ {\overrightarrow {M{M_0}} ;{{\overrightarrow u }_d}} \right]} \right|}}{{\left| {\overrightarrow {{u_d}} } \right|}}\,\,\,\left( {{M_0} \in d} \right)\)

Giải chi tiết

Ta có: \(\left( P \right):\,\,\left( {{m^2} + m + 1} \right)x + 2\left( {{m^2} - 1} \right)y + 2\left( {m + 2} \right)z + {m^2} + m + 1 = 0\)

\( \Leftrightarrow \left( {x + 2y + 1} \right){m^2} + \left( {x + 2z + 1} \right)m + x - 2y + 4z + 1 = 0\)

Phương trình nghiệm đung với mọi \(m \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 1 = 0\\x + 2z + 1 = 0\\x - 2y + 4z + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1 - 2t\\y = t\\z = t\end{array} \right.\)

Vậy \(\left( P \right)\) luôn chứa đường thẳng cố định \(\Delta :\,\,\left\{ \begin{array}{l}x =  - 1 - 2t\\y = t\\z = t\end{array} \right.\).

\({\overrightarrow u _\Delta } = \left( { - 2;1;1} \right)\) là 1 VTCP của đường thẳng \(\Delta \), \(M\left( { - 1;0;0} \right) \in \Delta \).

\( \Rightarrow \left[ {\overrightarrow {OM} ;\overrightarrow {{u_\Delta }} } \right] = \left( {0;1; - 1} \right)\)

Khi đó ta có \(d\left( {O;\Delta } \right) = \frac{{\left| {\left[ {\overrightarrow {OM} ;\overrightarrow {{u_\Delta }} } \right]} \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|}} = \frac{{\sqrt 2 }}{{\sqrt 6 }} = \frac{1}{{\sqrt 3 }}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com