Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

a) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 5\\3x - y = 1\end{array} \right..\) b) Tìm tọa

Câu hỏi số 266546:
Vận dụng

a) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 5\\3x - y = 1\end{array} \right..\)

b) Tìm tọa độ giao điểm \(A,\;B\) của đồ thị hàm số \(y = {x^2}\) và \(y = x + 2.\) Gọi \(D,\;C\) lần lượt là hình chiếu vuông góc của \(A,\;B\) lên trục hoành. Tính diện tích tứ giác \(ABCD.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:266546
Phương pháp giải

+) Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số.

+) Lập phương trình hoành độ giao điểm của hai đồ thị để tìm tọa độ hai giao điểm \(A,\;B.\)

+) Vẽ đồ thị hai hàm số trên cùng hệ trục tọa độ.

+) Dựa vào hình vẽ để tính diện tích tứ giác ABCD.

Giải chi tiết

 

a) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 5\\3x - y = 1\end{array} \right..\)

\(\left\{ \begin{array}{l}x + 2y = 5\\3x - y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + 2y = 5\\6x - 2y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x = 7\\y = 3x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right..\)

Vậy hệ phương trình có nghiệm duy nhất: \(\left( {x;\;y} \right) = \left( {1;\;2} \right).\)

b) Tìm tọa độ giao điểm \(A,\;B\) của đồ thị hàm số \(y = {x^2}\) và \(y = x + 2.\) Gọi \(D,\;C\) lần lượt là hình chiếu vuông góc của \(A,\;B\) lên trục hoành. Tính diện tích tứ giác \(ABCD.\)

                                          

Phương trình hoành độ giao điểm của hai đồ thị hàm số là: \({x^2} = x + 2\)

\(\begin{array}{l} \Leftrightarrow {x^2} - x - 2 = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 1 \Rightarrow A\left( { - 1;\;1} \right)\\x = 2 \Rightarrow B\left( {2;\;4} \right)\end{array} \right..\end{array}\)

C là hình chiếu của B trên trục hoành \( \Rightarrow C\left( {2;\;0} \right).\)

D là hình chiếu của A trên trục hoành \( \Rightarrow D\left( { - 1;\;0} \right).\)

Dựa vào đồ thị hàm số ta thấy ABCD là hình thang vuông tại D và C.

\(\begin{array}{l} \Rightarrow {S_{ABCD}} = \frac{{\left( {AD + CB} \right).CD}}{2} = \frac{{\left( {AD + CB} \right).\left( {DO + OC} \right)}}{2}\\\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{\left( {1 + 4} \right)\left( {1 + 2} \right)}}{2} = \frac{{15}}{2} = 7,5\;\;\left( {dvdt} \right).\end{array}\)

Vậy diện tích tứ giác ABCD là: \(7,5\;dvdt.\)

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com