Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O có AB < AC. Trên cung nhỏ AC lấy điểm M

Câu hỏi số 268240:
Vận dụng

Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O có AB < AC. Trên cung nhỏ AC lấy điểm M khác A thỏa mãn MA < MC. Vẽ đường kính MN của đường tròn (O) và gọi H, K lần lượt là hình chiếu vuông góc của A trên MB, MN. Chứng minh rằng:

a) Bốn điểm A, H, K, M cùng nằm trên một đường tròn.

b) AH.AK = HB.MK.

c) Khi điểm M di động trên cung nhỏ AC thì đường thẳng HK luôn qua một điểm cố định.

Quảng cáo

Câu hỏi:268240
Phương pháp giải

a) Chứng minh tứ giác AHKM là tứ giác nội tiếp.

b) Chứng minh tam giác AMK và BAH đồng dạng theo trường hợp góc – góc.

c) Kéo dài HK cắt AB tại E, chứng minh E là trung điểm của AB.

Giải chi tiết

 

 

a) Bốn điểm A, H, K, M cùng nằm trên một đường tròn.

Xét tứ giác \(AHKM\) ta có: \(\widehat {AHM} = \widehat {AKM} = {90^0}\;\;\left( {gt} \right)\)

Mà hai góc này là góc kề cạnh \(HK\) và cùng nhìn đoạn \(AM.\)

\( \Rightarrow AHKM\) là tứ giác nội tiếp (dấu hiệu nhận biết).

Hay bốn điểm \(A,H,\;K,\;M\) cùng nằm trên một đường tròn (đpcm).

b) AH.AK = HB.MK.

Ta có :

\(\left\{ \begin{array}{l}\widehat {AMK} = \frac{1}{2}sd\\\widehat {ABH} = \frac{1}{2}sd\end{array} \right. \Rightarrow \widehat {AMK} + \widehat {ABH} = \frac{1}{2}\left( {sd + sd} \right)\)

Mà \(sd\overset\frown{AN}+sd\overset\frown{AM}=sd\overset\frown{MAN}={{180}^{0}}\Rightarrow \widehat{AMK}+\widehat{ABH}={{90}^{0}}\)

Mà \(\widehat {ABH} + \widehat {BAH} = {90^0}\) (tam giác ABH vuông tại H).

\( \Rightarrow \widehat {AMK} = \widehat {BAH}\).

Xét tam giác AMK và tam giác BAH có :

\(\begin{array}{l}\widehat {AKM} = \widehat {BHA} = {90^0}\\\widehat {AMK} = \widehat {BAH}\left( {cmt} \right)\\ \Rightarrow \Delta AMK\Delta BAH\left( {g.g} \right)\\ \Rightarrow \frac{{AK}}{{HB}} = \frac{{MK}}{{AH}} \Rightarrow AH.AK = HB.MK\end{array}\).

c) Khi điểm M di động trên cung nhỏ AC thì đường thẳng HK luôn qua một điểm cố định.

Kéo dài HK cắt AB tại E.

Ta có \(\widehat {MAK} = \widehat {MHK}\) (hai góc nội tiếp cùng chắn cung MK).

Lại có \(\widehat {MHK} = \widehat {EHB}\) (đối đỉnh)

\( \Rightarrow \widehat {MAK} = \widehat {EHB}\)

Do \(\Delta AMK\backsim \Delta BAH\,\,\left( cmt \right)\Rightarrow \widehat{MAK}=\widehat{ABH}=\widehat{EBH}\)

\( \Rightarrow \widehat {EHB} = \widehat {EBH} \Rightarrow \Delta EHB\) cân tại E.

\( \Rightarrow EH = EB\,\,\left( 1 \right)\).

Ta có \(\widehat {EBH} + \widehat {EAH} = {90^0}\) (Tam giác ABH vuông tại H)

\(\widehat {EHB} + \widehat {EHA} = \widehat {AHB} = {90^0}\)

\( \Rightarrow \widehat {EAH} = \widehat {EHA} \Rightarrow \Delta EAH\) cân tại E \( \Rightarrow EA = EH\,\,\left( 2 \right)\).

Từ (1) và (2) \( \Rightarrow EA = EB \Rightarrow E\) là trung điểm của AB. Do A, B cố định \( \Rightarrow E\) cố định.

Vậy khi M di chuyển trên cung nhỏ AC thì HK luôn đi qua trung điểm của AB (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com