Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

1. Giải các phương trình sau: a) \(5\left( {x + 1} \right) = 3x + 7\)

Câu hỏi số 268241:
Vận dụng

1. Giải các phương trình sau:

a) \(5\left( {x + 1} \right) = 3x + 7\)                                        b)  

2. Cho hệ phương trình: \(\left\{ \begin{array}{l}3x - y = 2m - 1\\x + 2y = 3m + 2\end{array} \right.\)

a) Giải hệ phương trình khi \(m = 1\)              b) Tìm m để hệ có nghiệm \(\left( {x;y} \right)\) thỏa mãn: \({x^2} + {y^2} = 10\)

 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:268241
Phương pháp giải

1. a) Thực hiện phép tính để rút gọn hai vế, sau đó chuyển vế đổi dấu để tìm x.

    b) Đặt \({x^2} = t\left( {t \ge 0} \right)\) sau đó thay vào phương trình ban đầu, giải phương trình bậc hai ẩn t để tìm nghiệm.

2. a) giải hệ phương trình với m = 1, ta thay m = 1 vào phương trình sử dụng phương pháp thế hoặc cộng đại số để tìm nghiệm.

    b) +) Tìm m để hệ có nghiệm

        +) Tìm nghiệm x, y của phương trình sau đó thay vào đề bài để tìm m.

Giải chi tiết

1. Giải các phương trình sau:

a)\(5\left( {x + 1} \right) = 3x + 7\)

\(\begin{array}{l} \Leftrightarrow 5x - 3x = 7 - 5\\ \Leftrightarrow 2x = 2\\ \Leftrightarrow x = 1\end{array}\)

b) \({x^4} - {x^2} - 12 = 0\)  (1)

Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\) Khi đó phương trình (1) trở thành:

\(\begin{array}{l}{t^2} - t - 12 = 0\\ \Leftrightarrow {t^2} + 3t - 4t - 12 = 0\\ \Leftrightarrow \left( {t + 3} \right)\left( {t - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t =  - 3\left( {ktm} \right)\\t = 4\left( {tm} \right)\end{array} \right.\end{array}\)

Với \(t = 4 \Leftrightarrow {x^2} = 4 \Leftrightarrow x =  \pm 2\)

Vậy phương trình (1) có tập nghiệm là: \(S = \left\{ { - 2;2} \right\}\)

2) Cho hệ phương trình: \(\left\{ \begin{array}{l}3x - y = 2m - 1\\x + 2y = 3m + 2\end{array} \right.\)

a) Giải hệ phương trình khi \(m = 1\)

Thay m = 1 vào hệ phương trình ta được hệ phương trình mới: \(\left\{ \begin{array}{l}3x - y = 2.1 - 1\\x + 2y = 3.1 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - y = 1\\x + 2y = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6x - 2y = 2\\x + 2y = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm là: \(\left( {x;y} \right) = \left( {1;2} \right)\)

b) Tìm m để hệ có nghiệm \(\left( {x;y} \right)\) thỏa mãn: \({x^2} + {y^2} = 10\)

Ta có: \(\frac{3}{1} \ne \frac{{ - 1}}{2}\) nên hệ phương trình đã cho luôn có nghiệm \(\left( {x;y} \right)\).

Theo đề bài ta có nghiệm  thỏa mãn:

\(\begin{array}{l}{x^2} + {y^2} = 10\\ \Leftrightarrow {m^2} + {\left( {m + 1} \right)^2} = 10\\ \Leftrightarrow 2{m^2} + 2m - 9 = 0\,\,\,\,\left( * \right)\end{array}\)

\(\Delta ' = 1 + 18 = 19 > 0\)

Khi đó (*) luôn có 2 nghiệm phân biệt: \(\left[ \begin{array}{l}m = \frac{{ - 1 - \sqrt {19} }}{2}\\m = \frac{{ - 1 + \sqrt {19} }}{2}\end{array} \right.\)

Đáp án cần chọn là: C

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com