Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) nhọn. Đường tròn tâm O đường kính BC cắt các cạnh \(AB,AC\) lần lượt tại

Câu hỏi số 268270:
Vận dụng

Cho tam giác \(ABC\) nhọn. Đường tròn tâm O đường kính BC cắt các cạnh \(AB,AC\) lần lượt tại các điểm \(M,N\,\,\left( {M \ne B,N \ne C} \right)\). Gọi H là giao điểm của BNCM; P là giao điểm của AHBC.

1.Chứng minh tứ giác AMHN nội tiếp được trong một đường tròn.

2.Chứng minh \(BM.BA = BP.BC\).

3.Trong trường hợp đặc biệt khi tam giác \(ABC\) đều cạnh bằng \(2a\) . Tính chu vi đường tròn ngoại tiếp tứ giác AMHN.

4.Từ điểm A kẻ các tiếp tuyến AEAF của đường tròn tâm O đường kính BC (E, F là các tiếp điểm). Chứng minh ba điểm \(E,H,F\) thẳng hàng.

Quảng cáo

Câu hỏi:268270
Phương pháp giải

1.Chứng minh tứ giác AMHN có tổng hai góc đối bằng 1800 và xác định tâm đường tròn ngoại tiếp tứ giác AMHN.

2.Chứng minh tam giác ABP và tam giác CBM đồng dạng.

3.Chứng minh H là trực tâm tam giác ABC.

4.Tam giác ABC đều \( \Rightarrow \) Trực tâm H là trọng tâm của tam giác ABC \( \Rightarrow AH = \frac{2}{3}AP\). Tính AH, suy ra bán kính và tính chu vi đường tròn ngoại tiếp tam giác tứ giác AMHN.

Gọi \(D = AO \cap EF\), chứng minh \(HD \bot AO\) và \(EF \bot AO \Rightarrow EF \equiv HD\).
Giải chi tiết

 

Cho tam giác \(ABC\) nhọn. Đường tròn tâm O đường kính BC cắt các cạnh \(AB,AC\) lần lượt tại các điểm \(M,N\,\,\left( {M \ne B,N \ne C} \right)\). Gọi H là giao điểm của BN và CM; P là giao điểm của AH và BC.

 

Chứng minh tứ giác AMHN nội tiếp được trong một đường tròn.

Ta có \(\widehat {BMC} = \widehat {BNC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn)

\( \Rightarrow \widehat {AMH} = \widehat {ANH} = {90^0}\)

\( \Rightarrow \) Tứ giác \(AMHN\) có \(\widehat {AMH} + \widehat {ANH} = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác AMHN là tứ giác nội tiếp đường tròn đường kính AH (Tứ giác có tổng hai góc đối bằng 1800).

Chứng minh \(BM.BA = BP.BC\).

Xét \(\Delta ABP\) và \(\Delta CBM\) có:

\(\widehat {APB} = \widehat {CMB} = {90^0}\) ;

\(\widehat {ABC}\) chung;

\( \Rightarrow \Delta ABP \sim \Delta CBM\,\,\left( {g.g} \right) \Rightarrow \frac{{BA}}{{BP}} = \frac{{BC}}{{BM}} \Rightarrow BM.BA = BP.BC\)  

Trong trường hợp đặc biệt khi tam giác \(ABC\) đều cạnh bằng \(2a\) . Tính chu vi đường tròn ngoại tiếp tứ giác AMHN.

Ta có \(BN \bot AC;\,\,CM \bot AB;\,\,BN \cap CM = H \Rightarrow H\) là trực tâm tam giác ABC.

\(\Delta ABC\) đều \( \Rightarrow \widehat {ABP} = \widehat {ABC} = {60^0}\)

Xét tam giác vuông ABP có \(AP = AB.\sin {60^0} = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \)

Do H là trực tâm tam giác ABC nên đồng thời H cũng là trọng tâm của tam giác ABC\( \Rightarrow AH = \frac{2}{3}AP = \frac{2}{3}a\sqrt 3  = \frac{{2a\sqrt 3 }}{3}\)

Vì AH là đường kính của đường tròn ngoại tiếp tứ giác AMHN nên bán kính của đường tròn ngoại tiếp tứ giác AMHN là \(\frac{{AH}}{2} = \frac{{a\sqrt 3 }}{3}\).

Vậy chu vi đường tròn ngoại tiếp tứ giác AMHN là \(C = 2\pi .\frac{{a\sqrt 3 }}{3} = \frac{{2\pi a\sqrt 3 }}{3}\).

Từ điểm A kẻ các tiếp tuyến AE và AF của đường tròn tâm O đường kính BC (E, F là các tiếp điểm). Chứng minh ba điểm \(E,H,F\) thẳng hàng.

Gọi D là giao điểm của OA và EF.

H là trực tâm tam giác ABC \( \Rightarrow AH \bot BC \Rightarrow AP \bot BC \Rightarrow \widehat {APC} = {90^0}\)

\(\widehat {BNC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \widehat {ANH} = {90^0}\) 

Xét \(\Delta AHN\) và \(\Delta ACP\) có :

\(\widehat {ANH} = \widehat {APC} = {90^0}\) (cmt)

\(\widehat {PAC}\) chung ;

\( \Rightarrow \Delta AHN \sim \Delta ACP\,\left( {g.g} \right) \Rightarrow \frac{{AH}}{{AC}} = \frac{{AN}}{{AP}} \Rightarrow AH.AP = AN.AC\,\,\,\left( 1 \right)\)

Xét \[\Delta AFN\] và \(\Delta ACF\) có :

\(\widehat {FAC}\) chung ;

\(\widehat {AFN} = \widehat {ACF}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung NF).

\( \Rightarrow \Delta AFN \sim \Delta ACF\,\,\left( {g.g} \right) \Rightarrow \frac{{AF}}{{AC}} = \frac{{AN}}{{AF}} \Rightarrow AN.AC = A{F^2}\,\,\,\left( 2 \right)\)

Ta có \(AF \bot OF\,\,\left( {gt} \right) \Rightarrow \Delta OAF\) vuông tại F.

Có \(AE = AF\,\) (tính chất hai tiếp tuyến cắt nhau) ; \(OE = OF\,\,\left( { = R} \right) \Rightarrow OA\) là trung trực của EF.

\( \Rightarrow OA \bot EF \Rightarrow FD\) là đường cao của tam giác vuông OAF.

\( \Rightarrow A{F^2} = AD.AO\,\,\,\left( 3 \right)\) (hệ thức lượng trong tam giác vuông).

Từ (1), (2) và (3) \( \Rightarrow AH.AP = AD.AO \Rightarrow \frac{{AH}}{{AO}} = \frac{{AD}}{{AP}}\)

Xét \(\Delta AHD\) và \(\Delta AOP\) có:

\(\widehat {OAP}\) chung;

\(\frac{{AH}}{{AO}} = \frac{{AD}}{{AP}}\,\,\left( {cmt} \right)\);

\( \Rightarrow \Delta AHD \sim \Delta AOP\,\,\left( {c.g.c} \right)\).

\( \Rightarrow \widehat {ADH} = \widehat {APO} = {90^0} \Rightarrow HD \bot OA\)

Từ đó ta có qua điểm ta kẻ được \[EF \bot OA\] (cmt) và \(HD \bot OA \Rightarrow EF \equiv HD\).

Vậy ba điểm \(E,H,F\) thẳng hàng.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com