Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\left( \Delta  \right):\,\,\frac{{x + 1}}{3} =

Câu hỏi số 268809:
Vận dụng cao

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\left( \Delta  \right):\,\,\frac{{x + 1}}{3} = \frac{{y - 4}}{{ - 2}} = \frac{{z - 4}}{{ - 1}}\) và các điểm \(A\left( {2;3; - 4} \right);\,\,B\left( {4;6; - 9} \right).\) Gọi C, D là các điểm thay đổi trên \(\Delta \) sao cho \(CD = \sqrt {14} \) và mặt cầu nội tiếp tứ diện ABCD có thể tích lớn nhất. Khi đó tọa độ trung điểm CD là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:268809
Giải chi tiết

 

Gọi I, r theo thứ tự là tâm và bán kính mặt cầu nội tiếp tứ diện ABCD.

Ta có \(r = d\left( {I;\left( {IAB} \right)} \right) = d\left( {I;\left( {IBC} \right)} \right) = d\left( {I;\left( {ICD} \right)} \right) = d\left( {I;\left( {IDA} \right)} \right)\)

I nằm trong tứ diện \(ABCD \Rightarrow {V_{ABCD}} = {V_{IABC}} + {V_{IBCD}} + {V_{ICDA}} + {V_{IBDA}}\)

\(\begin{array}{l} \Rightarrow {V_{ABCD}} = \frac{1}{3}r.{S_{ABC}} + \frac{1}{3}r.{S_{BCD}} + \frac{1}{3}r.{S_{CDA}} + \frac{1}{3}r.{S_{BDA}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{3}r\left( {{S_{ABC}} + {S_{BCD}} + {S_{CDA}} + {S_{BDA}}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{3}r.{S_{tp}}\\ \Rightarrow r = \frac{{3{V_{ABCD}}}}{{{S_{tp}}}}\end{array}\)

\({V_{ABCD}} = \frac{1}{6}AB.CD.d\left( {AB;CD} \right) = const\) vì AB, \(\Delta \) cố định và \(CD = \sqrt {14} \).

\({S_{BCD}} = \frac{1}{2}CD.d\left( {B;\Delta } \right) = const\)

\({S_{ABC}};\,\,{S_{BDA}}\) thay đổi vì C, D thay đổi trên \(\Delta \)

\( \Rightarrow {r_{\max }} \Leftrightarrow {S_{tp\,\min }} \Leftrightarrow {\left( {{S_{ABC}} + {S_{BDA}}} \right)_{\min }}\)

Vì \(C;D \in \Delta  \Rightarrow C\left( { - 1 + 3t;4 - 2t;4 - t} \right);\,\,D\left( { - 1 + 3t';4 - 2t';4 - t'} \right)\) (giả sử \(t' > 1\))

\(CD = \sqrt {14}  \Leftrightarrow \sqrt {14{{\left( {t' - t} \right)}^2}}  = \sqrt {14}  \Leftrightarrow \left| {t' - t} \right| = 1 \Leftrightarrow t' = 1 + t\)

\(\begin{array}{l}{S_{ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right]} \right| = \frac{1}{2}\sqrt {{{\left( {13t - 29} \right)}^2} + {{\left( {13t + 1} \right)}^2} + {{\left( {13t - 11} \right)}^2}} \\{S_{BDA}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {AD} } \right]} \right| = \frac{1}{2}\sqrt {{{\left( {13t' - 29} \right)}^2} + {{\left( {13t' + 1} \right)}^2} + {{\left( {13t' - 11} \right)}^2}} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{2}\sqrt {{{\left( {13t - 16} \right)}^2} + {{\left( {13t + 14} \right)}^2} + {{\left( {13t + 2} \right)}^2}} \end{array}\)

\(\begin{array}{l} \Rightarrow {S_{ABC}} + {S_{BDA}}\\ = \frac{1}{2}\left[ {\sqrt {{{\left( {13t - 29} \right)}^2} + {{\left( {13t + 1} \right)}^2} + {{\left( {13t - 11} \right)}^2}}  + \sqrt {{{\left( {13t - 16} \right)}^2} + {{\left( {13t + 14} \right)}^2} + {{\left( {13t + 2} \right)}^2}} } \right]\\ = \frac{1}{2}\left[ {\sqrt {{{\left( {a - 29} \right)}^2} + {{\left( {a + 1} \right)}^2} + {{\left( {a - 11} \right)}^2}}  + \sqrt {{{\left( {a - 16} \right)}^2} + {{\left( {a + 14} \right)}^2} + {{\left( {a + 2} \right)}^2}} } \right]\,\,\,\left( {a = 13t} \right)\\ = \frac{1}{2}\left[ {\sqrt {3{a^2} - 78a + 963}  + \sqrt {3{a^2} + 456} } \right]\\ = \frac{{\sqrt 3 }}{2}\left[ {\sqrt {{a^2} - 26a + 321}  + \sqrt {{a^2} + 152} } \right]\\ = \frac{{\sqrt 3 }}{2}\left[ {\sqrt {{{\left( {a - 13} \right)}^2} + {{\left( {0 - \sqrt {152} } \right)}^2}}  + \sqrt {{{\left( {a - 0} \right)}^2} + {{\left( {0 - \left( { - \sqrt {152} } \right)} \right)}^2}} } \right]\\ = \frac{{\sqrt 3 }}{2}\left( {MP + MQ} \right)\end{array}\)

 Với \(M\left( {a;0} \right);\,\,P\left( {13;\sqrt {152} } \right);\,\,Q\left( {0; - \sqrt {152} } \right)\) trong mặt phẳng Oxy.

\( \ge \frac{{\sqrt 3 }}{2}PQ = \frac{{\sqrt {483} }}{2}\).

Dấu bằng xảy ra \( \Leftrightarrow \) M, N, P thẳng hàng và M nằm giữa P và Q \( \Leftrightarrow \overrightarrow {PM} \) và \(\overrightarrow {PQ} \) cùng phương \( \Leftrightarrow a = \frac{{13}}{2} \Leftrightarrow t = \frac{1}{2}\).

\( \Rightarrow C\left( {\frac{1}{2};3;\frac{7}{2}} \right);\,\,D\left( {\frac{7}{2};1;\frac{5}{2}} \right)\).

Vậy \({\left( {{S_{ABC}} + {S_{BDA}}} \right)_{\min }} = \frac{{\sqrt {483} }}{2} \Leftrightarrow \) Trung điểm của CD là \(J\left( {2;2;3} \right)\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com