Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình lập phương ABCD.A’B’C’D’ có tâm O. Gọi I là tâm của hình vuông A’B’C’D’ và M

Câu hỏi số 270530:
Vận dụng cao

Cho hình lập phương ABCD.A’B’C’D’ có tâm O. Gọi I là tâm của hình vuông A’B’C’D’ và M là điểm thuộc đoạn thẳng OI sao cho MO = 2MI (tham khảo hình vẽ). Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D’) và (MAB) bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:270530
Phương pháp giải

Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và vuông góc với giao tuyến.

Giải chi tiết

Ta có AB // C’D’ \( \Rightarrow \) Giao tuyến của hai mặt phẳng (MAB) và (MC’D’) là đường thẳng đi qua M và song song với AB, C’D’.

Gọi d là đường giao tuyến của hai mặt phẳng trên.

Do \(M \in OI \Rightarrow MA = MB \Rightarrow \Delta MAB\) cân tại M, tương tự \(\Delta MC'D'\) cân tại M. Gọi E, F lần lượt là trung điểm của AB và C’D’ ta có:

\(\left\{ \begin{array}{l}ME \bot AB \Rightarrow ME \bot d\\MF \bot C'D' \Rightarrow MF \bot d\end{array} \right. \Rightarrow \widehat {\left( {\left( {MAB} \right);\left( {MC'D'} \right)} \right)} = \widehat {\left( {ME;MF} \right)}\)

Kẻ MK // A’I, ta có \(A'K = MI = \frac{1}{3}OI = \dfrac{1}{6}AA'\)

Gọi cạnh hình lập phương là 1 \( \Rightarrow A'K = \dfrac{1}{6} \Rightarrow AK = \dfrac{5}{6}\)

Do A’B’C’D’ là hình vuông cạnh 1 \( \Rightarrow KM = A'I = \dfrac{1}{{\sqrt 2 }} \Rightarrow AM = \sqrt {A{K^2} + K{M^2}}  = \sqrt {\frac{{43}}{{36}}} \)

Xét tam giác vuông AME có \(ME = \sqrt {A{M^2} - A{E^2}}  = \sqrt {\dfrac{{43}}{{36}} - \dfrac{1}{4}}  = \dfrac{{\sqrt {34} }}{6}\)

Ta có \(IF = \dfrac{1}{2} \Rightarrow MF = \sqrt {M{I^2} + I{F^2}}  = \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( {\dfrac{1}{2}} \right)}^2}}  = \dfrac{{\sqrt {10} }}{6}\)

\(EF = AD' = \sqrt 2 \)

Áp dụng định lí Cosin trong tam giác EFM có:

\(\cos \widehat {EMF} = \dfrac{{M{E^2} + M{F^2} - E{F^2}}}{{2ME.MF}} = \dfrac{{\dfrac{{34}}{{36}} + \dfrac{{10}}{{36}} - 2}}{{2\dfrac{{\sqrt {34} }}{6}.\dfrac{{\sqrt {10} }}{6}}} =  - \dfrac{{7\sqrt {85} }}{{85}}\) 

\(\begin{array}{l} \Rightarrow \cos \widehat {\left( {ME;MF} \right)} = \dfrac{{7\sqrt {85} }}{{85}} = \cos \widehat {\left( {\left( {MAB} \right);\left( {MC'D'} \right)} \right)}\\ \Rightarrow \sin \widehat {\left( {\left( {MAB} \right);\left( {MC'D'} \right)} \right)} = \sqrt {1 - {{\left( {\dfrac{{7\sqrt {85} }}{{85}}} \right)}^2}}  = \dfrac{{6\sqrt {85} }}{{85}}\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com