Cho tam giác ABC vuông tại A \(\left( {AB > AC} \right)\) nội tiếp đường tròn \(\left(
Cho tam giác ABC vuông tại A \(\left( {AB > AC} \right)\) nội tiếp đường tròn \(\left( O \right)\), đường cao AH. Gọi D là điểm đối xứng với A qua BC. Gọi K là hình chiếu vuông góc của A lên BD. Qua H kẻ đường thẳng song song với BD cắt AK tại I. Đường thẳng BI cắt đường tròn \(\left( O \right)\) tại N (N khác B).
a) Chứng minh \(AN.BI = DH.BK\)
b) Tiếp tuyến của tại D cắt đường thẳng BC tại P. Chứng minh đường thẳng BC tiếp xúc với đường tròn ngoại tiếp tam giác ANP.
c) Tiếp tuyến của tại C cắt DP tại M. Đường tròn qua D tiếp xúc với CM tại M và cắt OD tại Q (Q khác D). Chứng minh đường thẳng qua Q vuông góc với BM luôn đi qua điểm cố định khi BC cố định và A di động trên đường tròn .
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











