Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, \(AB = a,\,\,BC = a\sqrt 2 \),

Câu hỏi số 274274:
Vận dụng

Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, \(AB = a,\,\,BC = a\sqrt 2 \), mặt \(\left( {A'BC} \right)\) hợp với đáy \(\left( {ABC} \right)\) một góc 300. Tính thể tích V của khối lăng trụ đó?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:274274
Phương pháp giải

+) Đặt \(AA' = x\), chứng minh tam giác AB’C’ vuông tại B’

+) Xác định góc giữa hai mặt phẳng (AB’C’) và (A’B’C’)

+) Tính AA’. Tính thể tích khối lăng trụ.

Giải chi tiết

 

Xét tam giác vuông ABC có \(BC = \sqrt {A{C^2} - A{B^2}}  = a\)

Đặt \(AA' = x\) ta có:

\(\begin{array}{l}A'B = \sqrt {{x^2} + {a^2}} \\A'C = \sqrt {{x^2} + 2{a^2}} \end{array}\)

Xét tam giác A’BC có

\(A'{B^2} + B{C^2} = {x^2} + {a^2} + {a^2} = {x^2} + 2{a^2} = A'{C^2}\)

\( \Rightarrow \Delta A'BC\) vuông tại B.

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\\left( {A'BC} \right) \supset A'B \bot BC\\\left( {ABC} \right) \supset AB \bot BC\end{array} \right. \Rightarrow \widehat {\left( {A'BC} \right);\left( {ABC} \right)} = \widehat {\left( {AB;A'B} \right)}\\ \Rightarrow \widehat {ABA'} = {30^0}\end{array}\)

Xét tam giác vuông AA’B có : \(AA' = AB.\tan {30^0} = \frac{a}{{\sqrt 3 }}\) 

Vậy \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = \frac{a}{{\sqrt 3 }}.\frac{1}{2}{a^2} = \frac{{{a^3}\sqrt 3 }}{6}\) .

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com