Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\) bằng 

Câu hỏi số 276739:
Vận dụng

Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\) bằng 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:276739
Phương pháp giải

Đặt \({2^x} = t,\,\,\left( {t > 0} \right)\). Giải phương trình tìm \(t\), sau đó tìm \(x\) và tổng các nghiệm.

Giải chi tiết

 

Đặt \({2^x} = t,\,\,\left( {t > 0} \right)\). Phương trình trở thành: \({t^2} - 3.t.2 + 8 = 0 \Leftrightarrow {t^2} - 6t + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = 4\end{array} \right.\)

\(t = 2 \Rightarrow {2^x} = 2 \Leftrightarrow x = 1\)

\(t = 4 \Rightarrow {2^x} = 4 \Leftrightarrow x = 2\)

 Tổng hai nghiệm của phương trình đã cho là: \(1 + 2 = 3\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com