Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M =

Câu hỏi số 281501:
Vận dụng

Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{m}{{{e^n}}}\), trong đó \(m,\,n\) là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:281501
Phương pháp giải

Phương pháp tìm GTNN, GTLN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;b} \right]\):

+) Giải phương trình \(f'\left( x \right) = 0 \Rightarrow \) các nghiệm \({x_i} \in \left[ {a;b} \right]\).

+) Tính các giá trị \(f\left( {{x_i}} \right);\,\,\,f\left( a \right);\,\,f\left( b \right)\)

+) So sánh và kết luận.

Giải chi tiết

 

\(y = \frac{{{{\ln }^2}x}}{x} \Rightarrow y' = \frac{{2\ln x.\frac{1}{x}.x - 1.{{\ln }^2}x}}{{{x^2}}} = \frac{{2\ln x - {{\ln }^2}x}}{{{x^2}}};\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}\ln x = 0\\\ln x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = {e^2}\end{array} \right.\)

Bảng biến thiên:

 

GTLN của hàm số trên \(\left[ {1;{e^3}} \right]\) là \(M = \frac{4}{{{e^2}}} = \frac{m}{{{e^n}}} \Rightarrow m = 4,\,\,n = 2\)

\( \Rightarrow S = {m^2} + 2{n^3} = {4^2} + {2.2^3} = 16 + 16 = 32\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com