Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

a) So sánh \(2\sqrt 3  + \sqrt {27} \) và \(\sqrt {74} .\) b) Chứng minh đẳng thức: \(\left( {\frac{1}{{\sqrt

Câu hỏi số 282201:
Vận dụng

a) So sánh \(2\sqrt 3  + \sqrt {27} \) và \(\sqrt {74} .\)

b) Chứng minh đẳng thức: \(\left( {\frac{1}{{\sqrt x  - 2}} - \frac{1}{{\sqrt x  + 2}}} \right).\frac{{x - 4}}{4} = 1,\) với \(x \ge 0\) và \(x \ne 4.\)

c) Tìm giá trị của \(m\) để đồ thị hàm số \(y = 3x + m\) đi qua điểm \(A\left( {1;\;2} \right).\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:282201
Phương pháp giải

a) Rút gọn số hạng thứ nhất sau đó so sánh theo tính chất: với mọi \(a > b > 0\) ta có: \(\sqrt a  > \sqrt b .\)

b) Quy đồng mẫu các phân thức và rút gọn biểu thức ở vế trái sao cho bằng biểu thức ở vế phải.

c) Thay tọa độ điểm A vào công thức hàm số đểm tìm m.

Giải chi tiết

a) So sánh \(2\sqrt 3  + \sqrt {27} \)\(\sqrt {74} .\)

Ta có: \(2\sqrt 3  + \sqrt {27}  = 2\sqrt 3  + 3\sqrt 3  = 5\sqrt 3  = \sqrt {{5^2}.3}  = \sqrt {75} .\)

Vì \(75 > 74 \Rightarrow \sqrt {75}  > \sqrt {74}  \Rightarrow 2\sqrt 3  + \sqrt {27}  > \sqrt {74} .\)

Vậy \(2\sqrt 3  + \sqrt {27}  > \sqrt {74} .\)

b) Chứng minh đẳng thức: \(\left( {\frac{1}{{\sqrt x  - 2}} - \frac{1}{{\sqrt x  + 2}}} \right).\frac{{x - 4}}{4} = 1,\) với \(x \ge 0\)\(x \ne 4.\)

\(\begin{array}{l}\;\;\;\left( {\frac{1}{{\sqrt x  - 2}} - \frac{1}{{\sqrt x  + 2}}} \right).\frac{{x - 4}}{4}\\ = \frac{{\sqrt x  + 2 - \sqrt x  + 2}}{{\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 2} \right)}}.\frac{{x - 4}}{4}\\ = \frac{4}{{x - 4}}.\frac{{x - 4}}{4} = 1\;\;\;\left( {dpcm} \right).\end{array}\)

Vậy với \(x \ge 0,\;x \ne 4\) ta có: \(\left( {\frac{1}{{\sqrt x  - 2}} - \frac{1}{{\sqrt x  + 2}}} \right).\frac{{x - 4}}{4} = 1.\)

c) Tìm giá trị của \(m\) để đồ thị hàm số \(y = 3x + m\) đi qua điểm \(A\left( {1;\;2} \right).\)

Đồ thị hàm số đi qua điểm \(A\left( {1;\;2} \right) \Rightarrow 2 = 3.1 + m \Leftrightarrow m =  - 1.\)

Vậy \(m =  - 1.\)

Đáp án cần chọn là: B

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com