Cho đường tròn \(\left( {O;R} \right)\) và một điểm H cố định nằm ngoài đường tròn. Qua H kẻ
Cho đường tròn \(\left( {O;R} \right)\) và một điểm H cố định nằm ngoài đường tròn. Qua H kẻ đường thẳng d vuông góc với đoạn thẳng OH. Từ một điểm S bất kì trên đường thẳng d kẻ hai tiếp tuyến SA, SB với đường tròn \(\left( {O;R} \right)\) (A, B là tiếp điểm). Gọi M,N lần lượt là giao điểm của đoạn thẳng SO với đoạn thẳng AB và với đường tròn \(\left( {O;R} \right)\).
1) Chứng minh bốn điếm S, A, O, B cùng nằm trên một đường tròn
2) Chứng minh \(OM.OS = {R^2}\)
3) Chứng minh N là tâm đường tròn nội tiếp tam giác SAB
4) Khi điểm S di chuyển trên đường thẳng d thì điểm M di chuyển trên đường nào? Tại sao?
Quảng cáo
1) Chứng minh cho A, B cùng thuộc đường tròn đường kính OS.
2) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông để chứng minh.
3) Chứng minh \(\angle NBS = \angle NBM\) dựa vào các góc vuông từ đó suy ra điều phải chứng minh.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










