Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hàm số \(y = {\sin ^4}x + {\cos ^4}x + m\sin x\cos x\) đạt giá trị lớn nhất là \(\frac{9}{8}\). Có bao

Câu hỏi số 287439:
Vận dụng

Hàm số \(y = {\sin ^4}x + {\cos ^4}x + m\sin x\cos x\) đạt giá trị lớn nhất là \(\frac{9}{8}\). Có bao nhiêu giá trị của m thõa mãn?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:287439
Phương pháp giải

- Dùng công thức \({\sin ^4}x + {\cos ^4}x = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x = 1 - \frac{1}{2}{\sin ^2}2x\)

- Xét hàm số bậc hai với ẩn \(\sin 2x\) với \(\left| {\sin 2x} \right| \le 1\).

Giải chi tiết

Ta có:

\(\begin{array}{l}y = {\sin ^4}x + {\cos ^4}x + m\sin x\cos x\\\,\,\,\,\, = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x + m\sin x\cos x\\\,\,\,\,\, =  - \frac{1}{2}{\sin ^2}2x + \frac{1}{2}m\sin 2x + 1\\\;\;\; =  - \frac{1}{2}\left( {{{\sin }^2}2x - m\sin 2x} \right) + 1\\\,\,\,\,\, =  - \frac{1}{2}{\left( {\sin 2x - \frac{m}{2}} \right)^2} + 1 + \frac{{{m^2}}}{8}\end{array}\)

Xét phương trình: \(\sin 2x - \frac{m}{2} = 0 \Leftrightarrow \sin 2x = \frac{m}{2}\,\,\,\left( 1 \right)\)

+) Nếu (1) có nghiệm tức là \(\left| m \right| \le 2\),  khi đó \(y =  - \frac{1}{2}{\left( {\sin 2x - \frac{m}{2}} \right)^2} + 1 + \frac{{{m^2}}}{8} \le 1 + \frac{{{m^2}}}{8}\)

Giá trị lớn nhất: \(1 + \frac{{{m^2}}}{8} = \frac{9}{8} \Leftrightarrow m =  \pm 1\). Khi đó: 

Với \(m = 1\) thì giá trị lớn nhất xảy ra khi \(\sin 2x = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k\pi \\x = \frac{{5\pi }}{{12}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right).\)

Với \(m =  - 1\) thì giá trị lớn nhất xảy ra khi\(\sin 2x =  - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{{12}} + k\pi \\x =  - \frac{{5\pi }}{{12}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right).\)

+) Nếu (1) vô nghiệm, tức là: \(\left| m \right| > 2\) khi đó:

TH1:  Nếu \(m > 2\)thì: \(0 < \frac{m}{2} - 1 \le \left| {\sin 2x - \frac{m}{2}} \right| \le \frac{m}{2} + 1\), khi đó:

\(y =  - \frac{1}{2}{\left( {\sin 2x - \frac{m}{2}} \right)^2} + 1 + \frac{{{m^2}}}{8} \le 1 + \frac{{{m^2}}}{8} - \frac{1}{2}{\left( {\frac{m}{2} - 1} \right)^2} = \frac{1}{2} + \frac{m}{2}\)

Giá trị lớn nhất: \(\frac{1}{2} + \frac{m}{2} = \frac{9}{8} \Leftrightarrow m = \frac{5}{4}\) (không thõa mãn)

TH2: Nếu \(m <  - 2\)thì: \(0 <  - \frac{m}{2} - 1 \le \left| {\sin 2x - \frac{m}{2}} \right| \le  - \frac{m}{2} + 1\), khi đó:

\(y =  - \frac{1}{2}{\left( {\sin 2x - \frac{m}{2}} \right)^2} + 1 + \frac{{{m^2}}}{8} \le 1 + \frac{{{m^2}}}{8} - \frac{1}{2}{\left( { - \frac{m}{2} - 1} \right)^2} = \frac{1}{2} - \frac{m}{2}\)

Giá trị lớn nhất: \(\frac{1}{2} - \frac{m}{2} = \frac{9}{8} \Leftrightarrow m =  - \frac{5}{4}\) (không thõa mãn)

Vậy có \(2\) giá trị của m là: \(m =  \pm 1\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com