Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(a + 5b\,\, \vdots \,\,7\,\,(a,\,b \in N)\). Chứng minh rằng:  \(10a + b\,\, \vdots \,\,7\,\)

Câu hỏi số 288195:
Vận dụng cao

Cho \(a + 5b\,\, \vdots \,\,7\,\,(a,\,b \in N)\). Chứng minh rằng:  \(10a + b\,\, \vdots \,\,7\,\)

Quảng cáo

Câu hỏi:288195
Phương pháp giải

Áp dụng tính chất chia hết của một tổng.

Giải chi tiết

Ta có:

\(\begin{array}{l}\left( {a + 5b} \right)\,\, \vdots \,\,7\,\,\,\,\,(a,\,b \in N)\\ \Rightarrow 10.(a + 5b)\,\, \vdots \,\,7\\ \Rightarrow \left( {10a + 50b} \right)\,\,\, \vdots \,\,7\\ \Rightarrow \left( {10a + b + 49b} \right)\,\,\, \vdots \,\,7\\ \Rightarrow \left[ {(10a + b) + 49b} \right]\,\,\, \vdots \,\,7\end{array}\)

Mà \(49b\,\,\, \vdots \,\,7\) nên suy ra \(\left( {10a + b} \right)\,\,\, \vdots \,\,7\).

Vậy  \(\left( {a + 5b\,} \right)\, \vdots \,\,7\,\,(a,\,b \in N)\) thì \(\left( {10a + b} \right)\,\, \vdots \,\,7.\)

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com