Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số các giá trị nguyên của tham số m để hàm số \(y = \left( {m + 1} \right){x^4} + \left( {3m -

Câu hỏi số 289377:
Vận dụng

Tìm số các giá trị nguyên của tham số m để hàm số \(y = \left( {m + 1} \right){x^4} + \left( {3m - 10} \right){x^2} + 2\) có ba cực trị ?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:289377
Phương pháp giải

Để hàm số \(y = a{x^4} + b{x^2} + c\,\,\left( {a \ne 0} \right)\) có ba điểm cực trị thì phương trình \(y' = 0\) có 3 nghiệm phân biệt.

Giải chi tiết

 

Ta có: \(y' = 4\left( {m + 1} \right){x^3} + 2\left( {3m - 10} \right)x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\2\left( {m + 1} \right){x^2} = 10 - 3m\end{array} \right.\)

Hàm số có ba cực trị \( \Leftrightarrow y' = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}m + 1 \ne 0\\\frac{{10 - 3m}}{{2\left( {m + 1} \right)}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne  - 1\\ - 1 < m < \frac{{10}}{3}\end{array} \right. \Leftrightarrow  - 1 < m < \frac{{10}}{3}\)

Kết hợp điều kiện \(m \in Z \Rightarrow m \in \left\{ {0;1;2;3} \right\}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com