Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\). Phương trình tiếp tuyến tại điểm \(M\left( {2;5} \right)\)

Câu hỏi số 292462:
Thông hiểu

Cho hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\). Phương trình tiếp tuyến tại điểm \(M\left( {2;5} \right)\) của đồ thị hàm số trên là: 

Đáp án đúng là: B

Quảng cáo

Câu hỏi:292462
Phương pháp giải

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) là: \(y = f'\left( {{x_0}} \right).\left( {x - {x_0}} \right) + {y_0}\).

Giải chi tiết

\(y = \dfrac{{2x + 1}}{{x - 1}},\,\,\left( {D = R\backslash \left\{ 1 \right\}} \right)\,\, \Rightarrow y' =  - \dfrac{3}{{{{\left( {x - 1} \right)}^2}}} \Rightarrow y'\left( 2 \right) = \dfrac{{ - 3}}{{{{\left( {2 - 1} \right)}^2}}} =  - 3\)

\(y\left( 2 \right) = \dfrac{{2.2 + 1}}{{2 - 1}} = 5\).

Vậy phương trình tiếp tuyến: \(y =  - 3.\left( {x - 2} \right) + 5\,\, \Leftrightarrow y =  - 3x + 11\)

Chọn: B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com